知识图嵌入的有效负三元组采样

IF 1.1 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES Pub Date : 2022-11-17 DOI:10.1080/02522667.2022.2133215
A. Khobragade, Rushikesh Mahajan, Hrithik Langi, Rohit Mundhe, S. Ghumbre
{"title":"知识图嵌入的有效负三元组采样","authors":"A. Khobragade, Rushikesh Mahajan, Hrithik Langi, Rohit Mundhe, S. Ghumbre","doi":"10.1080/02522667.2022.2133215","DOIUrl":null,"url":null,"abstract":"Abstract Knowledge graphs contain only positive triplet facts, whereas the negative triplets need to be generated precisely to train the embedding models. Early Uniform and Bernoulli sampling are applied but suffer’s from the zero loss problems during training, affecting the performance of embedding models. Recently, generative adversarial technic attended the dynamic negative sampling and obtained better performance by vanishing zero loss but on the adverse side of increasing the model complexity and training parameter. However, NSCaching balances the performance and complexity, generating a single negative triplet sample for each positive triplet that focuses on vanishing gradients. This paper addressed the zero loss training problem due to the low-scored negative triplet by proposing the extended version of NSCaching, to generate the high-scored negative triplet utilized to increase the training performance. The proposed method experimented with semantic matching knowledge graph embedding models on the benchmark datasets, where the results show the success on all evaluation metrics.","PeriodicalId":46518,"journal":{"name":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","volume":"43 1","pages":"2075 - 2087"},"PeriodicalIF":1.1000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effective negative triplet sampling for knowledge graph embedding\",\"authors\":\"A. Khobragade, Rushikesh Mahajan, Hrithik Langi, Rohit Mundhe, S. Ghumbre\",\"doi\":\"10.1080/02522667.2022.2133215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Knowledge graphs contain only positive triplet facts, whereas the negative triplets need to be generated precisely to train the embedding models. Early Uniform and Bernoulli sampling are applied but suffer’s from the zero loss problems during training, affecting the performance of embedding models. Recently, generative adversarial technic attended the dynamic negative sampling and obtained better performance by vanishing zero loss but on the adverse side of increasing the model complexity and training parameter. However, NSCaching balances the performance and complexity, generating a single negative triplet sample for each positive triplet that focuses on vanishing gradients. This paper addressed the zero loss training problem due to the low-scored negative triplet by proposing the extended version of NSCaching, to generate the high-scored negative triplet utilized to increase the training performance. The proposed method experimented with semantic matching knowledge graph embedding models on the benchmark datasets, where the results show the success on all evaluation metrics.\",\"PeriodicalId\":46518,\"journal\":{\"name\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"volume\":\"43 1\",\"pages\":\"2075 - 2087\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02522667.2022.2133215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02522667.2022.2133215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

抽象知识图只包含正三元组事实,而负三元组需要精确生成才能训练嵌入模型。应用了早期的均匀采样和伯努利采样,但在训练过程中存在零损失问题,影响了嵌入模型的性能。近年来,生成对抗性技术加入了动态负采样,通过消除零损失获得了更好的性能,但同时增加了模型复杂度和训练参数。然而,NSCacheng平衡了性能和复杂性,为每个正三元组生成一个负三元组样本,重点关注消失梯度。本文通过提出NSCaching的扩展版本来解决由于低分负三元组而导致的零损失训练问题,以生成用于提高训练性能的高分负三元组。该方法在基准数据集上对语义匹配知识图嵌入模型进行了实验,结果表明在所有评估指标上都是成功的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective negative triplet sampling for knowledge graph embedding
Abstract Knowledge graphs contain only positive triplet facts, whereas the negative triplets need to be generated precisely to train the embedding models. Early Uniform and Bernoulli sampling are applied but suffer’s from the zero loss problems during training, affecting the performance of embedding models. Recently, generative adversarial technic attended the dynamic negative sampling and obtained better performance by vanishing zero loss but on the adverse side of increasing the model complexity and training parameter. However, NSCaching balances the performance and complexity, generating a single negative triplet sample for each positive triplet that focuses on vanishing gradients. This paper addressed the zero loss training problem due to the low-scored negative triplet by proposing the extended version of NSCaching, to generate the high-scored negative triplet utilized to increase the training performance. The proposed method experimented with semantic matching knowledge graph embedding models on the benchmark datasets, where the results show the success on all evaluation metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
21.40%
发文量
88
期刊最新文献
Paediatric liver biopsies: A single-centre experience in Erzincan Binali Yıldırım University. An approach to fuzzy transportation problem using Triacontakaidigon fuzzy number with alpha cut ranking technique Credit strategy of micro, small, and medium enterprises with known reputation risk: Evidence from a comprehensive evaluation model Some results on the open subset intersection graph of a product topological space Deep learning for automatic identification of plants through leaf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1