Ruihan Zhao, Liang Luo, Pengzhong Li, Jinguang Wang
{"title":"基于工业异构数据的产品质量管理KPI可视化系统","authors":"Ruihan Zhao, Liang Luo, Pengzhong Li, Jinguang Wang","doi":"10.1108/aa-05-2022-0139","DOIUrl":null,"url":null,"abstract":"\nPurpose\nQuality management systems are commonly applied to meet the increasingly stringent requirements for product quality in discrete manufacturing industries. However, traditional experience-driven quality management methods are incapable of handling heterogeneous data from multiple sources, leading to information islands. This study aims to present a quality management key performance indicator visualization (QM-KPIVIS) system to enable integrated quality control and ultimately ensure product quality.\n\n\nDesign/methodology/approach\nBased on multiple heterogeneous data, an integrated approach is proposed to quantify explicitly the relationship between Internet of Things data and product quality. Specifically, this study identifies the tracing path of quality problems based on multiple heterogeneous quality information tree. In addition, a hierarchical analysis approach is adopted to calculate the key performance indicators of quality influencing factors in the quality control process.\n\n\nFindings\nProposed QM-KPIVIS system consists of data visualization, quality problem processing, quality optimization and user rights management modules, which perform in a well-coordinated manner. An empirical study was also conducted to validate the effectiveness of proposed system.\n\n\nOriginality/value\nTo the best of the authors’ knowledge, this study is the first attempt to use industrial Internet of Things and multisource heterogeneous data for integrated product quality management. Proposed approach is more user-friendly and intuitive compared to traditional empirically driven quality management methods and has been initially applied in the manufacturing industry.\n","PeriodicalId":55448,"journal":{"name":"Assembly Automation","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An industrial heterogeneous data based quality management KPI visualization system for product quality control\",\"authors\":\"Ruihan Zhao, Liang Luo, Pengzhong Li, Jinguang Wang\",\"doi\":\"10.1108/aa-05-2022-0139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nQuality management systems are commonly applied to meet the increasingly stringent requirements for product quality in discrete manufacturing industries. However, traditional experience-driven quality management methods are incapable of handling heterogeneous data from multiple sources, leading to information islands. This study aims to present a quality management key performance indicator visualization (QM-KPIVIS) system to enable integrated quality control and ultimately ensure product quality.\\n\\n\\nDesign/methodology/approach\\nBased on multiple heterogeneous data, an integrated approach is proposed to quantify explicitly the relationship between Internet of Things data and product quality. Specifically, this study identifies the tracing path of quality problems based on multiple heterogeneous quality information tree. In addition, a hierarchical analysis approach is adopted to calculate the key performance indicators of quality influencing factors in the quality control process.\\n\\n\\nFindings\\nProposed QM-KPIVIS system consists of data visualization, quality problem processing, quality optimization and user rights management modules, which perform in a well-coordinated manner. An empirical study was also conducted to validate the effectiveness of proposed system.\\n\\n\\nOriginality/value\\nTo the best of the authors’ knowledge, this study is the first attempt to use industrial Internet of Things and multisource heterogeneous data for integrated product quality management. Proposed approach is more user-friendly and intuitive compared to traditional empirically driven quality management methods and has been initially applied in the manufacturing industry.\\n\",\"PeriodicalId\":55448,\"journal\":{\"name\":\"Assembly Automation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assembly Automation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/aa-05-2022-0139\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assembly Automation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/aa-05-2022-0139","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
An industrial heterogeneous data based quality management KPI visualization system for product quality control
Purpose
Quality management systems are commonly applied to meet the increasingly stringent requirements for product quality in discrete manufacturing industries. However, traditional experience-driven quality management methods are incapable of handling heterogeneous data from multiple sources, leading to information islands. This study aims to present a quality management key performance indicator visualization (QM-KPIVIS) system to enable integrated quality control and ultimately ensure product quality.
Design/methodology/approach
Based on multiple heterogeneous data, an integrated approach is proposed to quantify explicitly the relationship between Internet of Things data and product quality. Specifically, this study identifies the tracing path of quality problems based on multiple heterogeneous quality information tree. In addition, a hierarchical analysis approach is adopted to calculate the key performance indicators of quality influencing factors in the quality control process.
Findings
Proposed QM-KPIVIS system consists of data visualization, quality problem processing, quality optimization and user rights management modules, which perform in a well-coordinated manner. An empirical study was also conducted to validate the effectiveness of proposed system.
Originality/value
To the best of the authors’ knowledge, this study is the first attempt to use industrial Internet of Things and multisource heterogeneous data for integrated product quality management. Proposed approach is more user-friendly and intuitive compared to traditional empirically driven quality management methods and has been initially applied in the manufacturing industry.
期刊介绍:
Assembly Automation publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of assembly technology and automation, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of industry developments.
All research articles undergo rigorous double-blind peer review, and the journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations.