Yao Huang, Christopher Ellingford, C. Bowen, T. McNally, Daming Wu, C. Wan
{"title":"定制多组分和多相聚合物复合材料的导电性和导热性","authors":"Yao Huang, Christopher Ellingford, C. Bowen, T. McNally, Daming Wu, C. Wan","doi":"10.1080/09506608.2019.1582180","DOIUrl":null,"url":null,"abstract":"ABSTRACT The majority of polymers are electrical and thermal insulators. In order to create electrically active and thermally conductive polymers and composites, the hybrid-filler systems is an effective approach, i.e. combining different types of fillers with different dimensions, in order to facilitate the formation of interconnected conducting networks and to enhance the electrical, thermal, mechanical and processing properties synergistically. By tailoring polymer-filler interactions both thermodynamically and kinetically, the selective localisation of fillers in polymer blends and at the interface of co-continuous polymer blends can enhance the electrical conductivity at a low percolation threshold. Moreover, selective localisation of different filler types in different co-continuous phases can result in multiple functionalities, such as high electrical conductivity, thermal conductivity or electromagnetic interference shielding. In this review, we discuss the latest progress towards the development of electrically active and thermally conductive polymer composites, and highlight the technical challenges and future research directions.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"65 1","pages":"129 - 163"},"PeriodicalIF":16.8000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09506608.2019.1582180","citationCount":"64","resultStr":"{\"title\":\"Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites\",\"authors\":\"Yao Huang, Christopher Ellingford, C. Bowen, T. McNally, Daming Wu, C. Wan\",\"doi\":\"10.1080/09506608.2019.1582180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The majority of polymers are electrical and thermal insulators. In order to create electrically active and thermally conductive polymers and composites, the hybrid-filler systems is an effective approach, i.e. combining different types of fillers with different dimensions, in order to facilitate the formation of interconnected conducting networks and to enhance the electrical, thermal, mechanical and processing properties synergistically. By tailoring polymer-filler interactions both thermodynamically and kinetically, the selective localisation of fillers in polymer blends and at the interface of co-continuous polymer blends can enhance the electrical conductivity at a low percolation threshold. Moreover, selective localisation of different filler types in different co-continuous phases can result in multiple functionalities, such as high electrical conductivity, thermal conductivity or electromagnetic interference shielding. In this review, we discuss the latest progress towards the development of electrically active and thermally conductive polymer composites, and highlight the technical challenges and future research directions.\",\"PeriodicalId\":14427,\"journal\":{\"name\":\"International Materials Reviews\",\"volume\":\"65 1\",\"pages\":\"129 - 163\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09506608.2019.1582180\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Materials Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09506608.2019.1582180\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2019.1582180","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites
ABSTRACT The majority of polymers are electrical and thermal insulators. In order to create electrically active and thermally conductive polymers and composites, the hybrid-filler systems is an effective approach, i.e. combining different types of fillers with different dimensions, in order to facilitate the formation of interconnected conducting networks and to enhance the electrical, thermal, mechanical and processing properties synergistically. By tailoring polymer-filler interactions both thermodynamically and kinetically, the selective localisation of fillers in polymer blends and at the interface of co-continuous polymer blends can enhance the electrical conductivity at a low percolation threshold. Moreover, selective localisation of different filler types in different co-continuous phases can result in multiple functionalities, such as high electrical conductivity, thermal conductivity or electromagnetic interference shielding. In this review, we discuss the latest progress towards the development of electrically active and thermally conductive polymer composites, and highlight the technical challenges and future research directions.
期刊介绍:
International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content.
Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information.
Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.