在SPARQL中处理定性条件首选项查询:可能性逻辑方法

IF 2.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Web Information Systems Pub Date : 2023-08-31 DOI:10.1108/ijwis-05-2023-0077
Fayçal Touazi, Amel Boustil
{"title":"在SPARQL中处理定性条件首选项查询:可能性逻辑方法","authors":"Fayçal Touazi, Amel Boustil","doi":"10.1108/ijwis-05-2023-0077","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to address the need for new approaches in locating items that closely match user preference criteria due to the rise in data volume of knowledge bases resulting from Open Data initiatives. Specifically, the paper focuses on evaluating SPARQL qualitative preference queries over user preferences in SPARQL.\n\n\nDesign/methodology/approach\nThe paper outlines a novel approach for handling SPARQL preference queries by representing preferences through symbolic weights using the possibilistic logic (PL) framework. This approach allows for the management of symbolic weights without relying on numerical values, using a partial ordering system instead. The paper compares this approach with numerous other approaches, including those based on skylines, fuzzy sets and conditional preference networks.\n\n\nFindings\nThe paper highlights the advantages of the proposed approach, which enables the representation of preference criteria through symbolic weights and qualitative considerations. This approach offers a more intuitive way to convey preferences and manage rankings.\n\n\nOriginality/value\nThe paper demonstrates the usefulness and originality of the proposed SPARQL language in the PL framework. The approach extends SPARQL by incorporating symbolic weights and qualitative preferences.\n","PeriodicalId":44153,"journal":{"name":"International Journal of Web Information Systems","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Handling qualitative conditional preference queries in SPARQL: possibilistic logic approach\",\"authors\":\"Fayçal Touazi, Amel Boustil\",\"doi\":\"10.1108/ijwis-05-2023-0077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this paper is to address the need for new approaches in locating items that closely match user preference criteria due to the rise in data volume of knowledge bases resulting from Open Data initiatives. Specifically, the paper focuses on evaluating SPARQL qualitative preference queries over user preferences in SPARQL.\\n\\n\\nDesign/methodology/approach\\nThe paper outlines a novel approach for handling SPARQL preference queries by representing preferences through symbolic weights using the possibilistic logic (PL) framework. This approach allows for the management of symbolic weights without relying on numerical values, using a partial ordering system instead. The paper compares this approach with numerous other approaches, including those based on skylines, fuzzy sets and conditional preference networks.\\n\\n\\nFindings\\nThe paper highlights the advantages of the proposed approach, which enables the representation of preference criteria through symbolic weights and qualitative considerations. This approach offers a more intuitive way to convey preferences and manage rankings.\\n\\n\\nOriginality/value\\nThe paper demonstrates the usefulness and originality of the proposed SPARQL language in the PL framework. The approach extends SPARQL by incorporating symbolic weights and qualitative preferences.\\n\",\"PeriodicalId\":44153,\"journal\":{\"name\":\"International Journal of Web Information Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijwis-05-2023-0077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijwis-05-2023-0077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的本文的目的是解决由于开放数据举措导致知识库数据量增加,在查找与用户偏好标准密切匹配的项目时需要新方法的问题。具体而言,本文侧重于评估SPARQL中相对于用户偏好的SPARQL定性偏好查询。设计/方法/方法本文概述了一种处理SPARQL偏好查询的新方法,通过使用可能性逻辑(PL)框架通过符号权重表示偏好。这种方法允许在不依赖数值的情况下管理符号权重,而是使用偏序系统。本文将这种方法与许多其他方法进行了比较,包括基于天际线、模糊集和条件偏好网络的方法。发现本文强调了所提出方法的优点,该方法能够通过符号权重和定性考虑来表示偏好标准。这种方法提供了一种更直观的方式来传达偏好和管理排名。独创性/价值本文证明了所提出的SPARQL语言在PL框架中的实用性和独创性。该方法通过结合符号权重和定性偏好来扩展SPARQL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Handling qualitative conditional preference queries in SPARQL: possibilistic logic approach
Purpose The purpose of this paper is to address the need for new approaches in locating items that closely match user preference criteria due to the rise in data volume of knowledge bases resulting from Open Data initiatives. Specifically, the paper focuses on evaluating SPARQL qualitative preference queries over user preferences in SPARQL. Design/methodology/approach The paper outlines a novel approach for handling SPARQL preference queries by representing preferences through symbolic weights using the possibilistic logic (PL) framework. This approach allows for the management of symbolic weights without relying on numerical values, using a partial ordering system instead. The paper compares this approach with numerous other approaches, including those based on skylines, fuzzy sets and conditional preference networks. Findings The paper highlights the advantages of the proposed approach, which enables the representation of preference criteria through symbolic weights and qualitative considerations. This approach offers a more intuitive way to convey preferences and manage rankings. Originality/value The paper demonstrates the usefulness and originality of the proposed SPARQL language in the PL framework. The approach extends SPARQL by incorporating symbolic weights and qualitative preferences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Web Information Systems
International Journal of Web Information Systems COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
4.60
自引率
0.00%
发文量
19
期刊介绍: The Global Information Infrastructure is a daily reality. In spite of the many applications in all domains of our societies: e-business, e-commerce, e-learning, e-science, and e-government, for instance, and in spite of the tremendous advances by engineers and scientists, the seamless development of Web information systems and services remains a major challenge. The journal examines how current shared vision for the future is one of semantically-rich information and service oriented architecture for global information systems. This vision is at the convergence of progress in technologies such as XML, Web services, RDF, OWL, of multimedia, multimodal, and multilingual information retrieval, and of distributed, mobile and ubiquitous computing. Topicality While the International Journal of Web Information Systems covers a broad range of topics, the journal welcomes papers that provide a perspective on all aspects of Web information systems: Web semantics and Web dynamics, Web mining and searching, Web databases and Web data integration, Web-based commerce and e-business, Web collaboration and distributed computing, Internet computing and networks, performance of Web applications, and Web multimedia services and Web-based education.
期刊最新文献
ImageNet classification with Raspberry Pis: federated learning algorithms of local classifiers A review of in-memory computing for machine learning: architectures, options Efficient knowledge distillation for remote sensing image classification: a CNN-based approach FedACQ: adaptive clustering quantization of model parameters in federated learning A systematic literature review of authorization and access control requirements and current state of the art for different database models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1