{"title":"喷射顺序对二冲程航空发动机空气辅助雾化器喷雾特性的影响","authors":"Yituan He, Denglin Zheng, Chunzhi Liu, Shiyong Liao","doi":"10.1115/1.4062083","DOIUrl":null,"url":null,"abstract":"\n The air-assisted atomizer used in a two-stroke aviation engine has two separate operation sequences, namely the fuel injection and air injection, in contrast to the synchronous fuel/air injection of conventional effervescent atomizers for continuous combustion engines. This work presents a numerical flow modeling to explore the effects of these two injection sequences on the effervescent spray formation, using the combined methodology of Eulerian-Eulerian multiphase technique and SST k-ω turbulence model. The transient fuel delivery in the internal fuel passage of the atomizer and the effects of the injection sequences on the developments of the droplet sprays were studied. Three characteristic times T1, T2 and T3, were introduced to specify the fuel injection duration, air injection duration, and the time interval between these two injection sequences respectively. The results showed that the most important role of T1 is to meter fuel mass loading, and T2 plays the dominant role on anchor-shaped spray structure. For the air injection sequence, there is a critical time, T3c, which is defined as the minimum opening time of the air injector, for the complete ejection of the fuel in the atomizer, shows a linear correlation to T2, but is weakly related to T1.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of injection sequences on spray characteristics of an air-assisted atomizer for two-stroke aviation engines\",\"authors\":\"Yituan He, Denglin Zheng, Chunzhi Liu, Shiyong Liao\",\"doi\":\"10.1115/1.4062083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The air-assisted atomizer used in a two-stroke aviation engine has two separate operation sequences, namely the fuel injection and air injection, in contrast to the synchronous fuel/air injection of conventional effervescent atomizers for continuous combustion engines. This work presents a numerical flow modeling to explore the effects of these two injection sequences on the effervescent spray formation, using the combined methodology of Eulerian-Eulerian multiphase technique and SST k-ω turbulence model. The transient fuel delivery in the internal fuel passage of the atomizer and the effects of the injection sequences on the developments of the droplet sprays were studied. Three characteristic times T1, T2 and T3, were introduced to specify the fuel injection duration, air injection duration, and the time interval between these two injection sequences respectively. The results showed that the most important role of T1 is to meter fuel mass loading, and T2 plays the dominant role on anchor-shaped spray structure. For the air injection sequence, there is a critical time, T3c, which is defined as the minimum opening time of the air injector, for the complete ejection of the fuel in the atomizer, shows a linear correlation to T2, but is weakly related to T1.\",\"PeriodicalId\":15676,\"journal\":{\"name\":\"Journal of Energy Resources Technology-transactions of The Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Resources Technology-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062083\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Resources Technology-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062083","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Effects of injection sequences on spray characteristics of an air-assisted atomizer for two-stroke aviation engines
The air-assisted atomizer used in a two-stroke aviation engine has two separate operation sequences, namely the fuel injection and air injection, in contrast to the synchronous fuel/air injection of conventional effervescent atomizers for continuous combustion engines. This work presents a numerical flow modeling to explore the effects of these two injection sequences on the effervescent spray formation, using the combined methodology of Eulerian-Eulerian multiphase technique and SST k-ω turbulence model. The transient fuel delivery in the internal fuel passage of the atomizer and the effects of the injection sequences on the developments of the droplet sprays were studied. Three characteristic times T1, T2 and T3, were introduced to specify the fuel injection duration, air injection duration, and the time interval between these two injection sequences respectively. The results showed that the most important role of T1 is to meter fuel mass loading, and T2 plays the dominant role on anchor-shaped spray structure. For the air injection sequence, there is a critical time, T3c, which is defined as the minimum opening time of the air injector, for the complete ejection of the fuel in the atomizer, shows a linear correlation to T2, but is weakly related to T1.
期刊介绍:
Specific areas of importance including, but not limited to: Fundamentals of thermodynamics such as energy, entropy and exergy, laws of thermodynamics; Thermoeconomics; Alternative and renewable energy sources; Internal combustion engines; (Geo) thermal energy storage and conversion systems; Fundamental combustion of fuels; Energy resource recovery from biomass and solid wastes; Carbon capture; Land and offshore wells drilling; Production and reservoir engineering;, Economics of energy resource exploitation