John Sunny, Hadi Nazaripoor, Jorge Palacios Moreno, P. Mertiny
{"title":"干燥E-玻璃纤维的加速零应力水热老化及其使用寿命的Arrhenius模型预测","authors":"John Sunny, Hadi Nazaripoor, Jorge Palacios Moreno, P. Mertiny","doi":"10.3390/fib11080070","DOIUrl":null,"url":null,"abstract":"Comprehending the degradation of glass fibers is crucial for service applications involving dry and wet conditions, especially when prolonged contact with water above room temperature is present. Depending on the polymer material, both thermosetting and thermoplastic matrices can permit the ingress of moisture. Therefore, fiber reinforcements embedded in the polymer matrix may experience moisture exposure. Additionally, some structural applications use fiber devoid of any matrix (dry fibers), in which water exposure must be avoided. In all of these cases, moisture may, therefore, have a significant impact on the reinforcing elements and the rate of degradation. The present work focuses on the effects of hydrothermal aging on the mechanical durability of long E-glass fibers by immersion in water at 60 °C, 71 °C, and 82 °C. A service life forecast model was created utilizing the Arrhenius technique, and a master curve of strength variation with exposure time was created for E-glass fibers at 60 °C. Using this modeling approach, it is possible to approximate the amount of time it will take to attain a given degradation level over a specified range of temperatures. Scanning electron microscopy was used to evaluate morphological changes in fiber surfaces due to hydrothermal exposure, while Fourier transform infrared spectroscopy and mass dissolution studies were used to elucidate the mechanism of the strength loss.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated Zero-Stress Hydrothermal Aging of Dry E-Glass Fibers and Service Life Prediction Using Arrhenius Model\",\"authors\":\"John Sunny, Hadi Nazaripoor, Jorge Palacios Moreno, P. Mertiny\",\"doi\":\"10.3390/fib11080070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comprehending the degradation of glass fibers is crucial for service applications involving dry and wet conditions, especially when prolonged contact with water above room temperature is present. Depending on the polymer material, both thermosetting and thermoplastic matrices can permit the ingress of moisture. Therefore, fiber reinforcements embedded in the polymer matrix may experience moisture exposure. Additionally, some structural applications use fiber devoid of any matrix (dry fibers), in which water exposure must be avoided. In all of these cases, moisture may, therefore, have a significant impact on the reinforcing elements and the rate of degradation. The present work focuses on the effects of hydrothermal aging on the mechanical durability of long E-glass fibers by immersion in water at 60 °C, 71 °C, and 82 °C. A service life forecast model was created utilizing the Arrhenius technique, and a master curve of strength variation with exposure time was created for E-glass fibers at 60 °C. Using this modeling approach, it is possible to approximate the amount of time it will take to attain a given degradation level over a specified range of temperatures. Scanning electron microscopy was used to evaluate morphological changes in fiber surfaces due to hydrothermal exposure, while Fourier transform infrared spectroscopy and mass dissolution studies were used to elucidate the mechanism of the strength loss.\",\"PeriodicalId\":12122,\"journal\":{\"name\":\"Fibers\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fib11080070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11080070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Accelerated Zero-Stress Hydrothermal Aging of Dry E-Glass Fibers and Service Life Prediction Using Arrhenius Model
Comprehending the degradation of glass fibers is crucial for service applications involving dry and wet conditions, especially when prolonged contact with water above room temperature is present. Depending on the polymer material, both thermosetting and thermoplastic matrices can permit the ingress of moisture. Therefore, fiber reinforcements embedded in the polymer matrix may experience moisture exposure. Additionally, some structural applications use fiber devoid of any matrix (dry fibers), in which water exposure must be avoided. In all of these cases, moisture may, therefore, have a significant impact on the reinforcing elements and the rate of degradation. The present work focuses on the effects of hydrothermal aging on the mechanical durability of long E-glass fibers by immersion in water at 60 °C, 71 °C, and 82 °C. A service life forecast model was created utilizing the Arrhenius technique, and a master curve of strength variation with exposure time was created for E-glass fibers at 60 °C. Using this modeling approach, it is possible to approximate the amount of time it will take to attain a given degradation level over a specified range of temperatures. Scanning electron microscopy was used to evaluate morphological changes in fiber surfaces due to hydrothermal exposure, while Fourier transform infrared spectroscopy and mass dissolution studies were used to elucidate the mechanism of the strength loss.
FibersEngineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍:
Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins