MapInWild:一个遥感数据集,用于解决是什么让自然变得狂野的问题[软件和数据集]

IF 16.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS IEEE Geoscience and Remote Sensing Magazine Pub Date : 2023-03-01 DOI:10.1109/MGRS.2022.3226525
Burak Ekim, T. Stomberg, R. Roscher, Michael Schmitt
{"title":"MapInWild:一个遥感数据集,用于解决是什么让自然变得狂野的问题[软件和数据集]","authors":"Burak Ekim, T. Stomberg, R. Roscher, Michael Schmitt","doi":"10.1109/MGRS.2022.3226525","DOIUrl":null,"url":null,"abstract":"The advancement in deep learning (DL) techniques has led to a notable increase in the number and size of annotated datasets in a variety of domains, with remote sensing (RS) being no exception <xref ref-type=\"bibr\" rid=\"ref1\">[1]</xref>. Also, an increase in Earth observation (EO) missions and the easy access to globally available and free geodata have opened up new research opportunities. Although numerous RS datasets have been published in the past years <xref ref-type=\"bibr\" rid=\"ref2\">[2]</xref>, <xref ref-type=\"bibr\" rid=\"ref3\">[3]</xref>, <xref ref-type=\"bibr\" rid=\"ref4\">[4]</xref>, <xref ref-type=\"bibr\" rid=\"ref5\">[5]</xref>, <xref ref-type=\"bibr\" rid=\"ref6\">[6]</xref>, most of them addressed tasks concerning man-made environments, such as building footprint extraction and road network classification, leaving the environmental and ecology-related subareas of RS underrepresented. Nevertheless, environmental protection has always been an important topic in the RS community, with RS being a useful tool to support conservation policies and strategies combating challenges such as deforestation and loss of biodiversity <xref ref-type=\"bibr\" rid=\"ref7\">[7]</xref>, <xref ref-type=\"bibr\" rid=\"ref8\">[8]</xref>, <xref ref-type=\"bibr\" rid=\"ref9\">[9]</xref>. Thus, in this article, to meet the pressing need to better understand the nature we are living in, we introduce a novel task of wilderness mapping and advertise the MapInWild dataset <xref ref-type=\"bibr\" rid=\"ref10\">[10]</xref>—a multimodal large-scale benchmark dataset designed for the task of wilderness mapping from space.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"11 1","pages":"103-114"},"PeriodicalIF":16.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MapInWild: A remote sensing dataset to address the question of what makes nature wild [Software and Data Sets]\",\"authors\":\"Burak Ekim, T. Stomberg, R. Roscher, Michael Schmitt\",\"doi\":\"10.1109/MGRS.2022.3226525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advancement in deep learning (DL) techniques has led to a notable increase in the number and size of annotated datasets in a variety of domains, with remote sensing (RS) being no exception <xref ref-type=\\\"bibr\\\" rid=\\\"ref1\\\">[1]</xref>. Also, an increase in Earth observation (EO) missions and the easy access to globally available and free geodata have opened up new research opportunities. Although numerous RS datasets have been published in the past years <xref ref-type=\\\"bibr\\\" rid=\\\"ref2\\\">[2]</xref>, <xref ref-type=\\\"bibr\\\" rid=\\\"ref3\\\">[3]</xref>, <xref ref-type=\\\"bibr\\\" rid=\\\"ref4\\\">[4]</xref>, <xref ref-type=\\\"bibr\\\" rid=\\\"ref5\\\">[5]</xref>, <xref ref-type=\\\"bibr\\\" rid=\\\"ref6\\\">[6]</xref>, most of them addressed tasks concerning man-made environments, such as building footprint extraction and road network classification, leaving the environmental and ecology-related subareas of RS underrepresented. Nevertheless, environmental protection has always been an important topic in the RS community, with RS being a useful tool to support conservation policies and strategies combating challenges such as deforestation and loss of biodiversity <xref ref-type=\\\"bibr\\\" rid=\\\"ref7\\\">[7]</xref>, <xref ref-type=\\\"bibr\\\" rid=\\\"ref8\\\">[8]</xref>, <xref ref-type=\\\"bibr\\\" rid=\\\"ref9\\\">[9]</xref>. Thus, in this article, to meet the pressing need to better understand the nature we are living in, we introduce a novel task of wilderness mapping and advertise the MapInWild dataset <xref ref-type=\\\"bibr\\\" rid=\\\"ref10\\\">[10]</xref>—a multimodal large-scale benchmark dataset designed for the task of wilderness mapping from space.\",\"PeriodicalId\":48660,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Magazine\",\"volume\":\"11 1\",\"pages\":\"103-114\"},\"PeriodicalIF\":16.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Magazine\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1109/MGRS.2022.3226525\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Magazine","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1109/MGRS.2022.3226525","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3

摘要

深度学习(DL)技术的进步导致了各个领域注释数据集的数量和大小的显著增加,遥感(RS)也不例外[1]。此外,地球观测任务的增加以及全球可用和免费的地球数据的便捷获取,为研究开辟了新的机会。尽管在过去的几年里已经发表了许多RS数据集[2]、[3]、[4]、[5]、[6],但其中大多数都涉及与人造环境有关的任务,如建筑足迹提取和道路网络分类,使得RS的环境和生态相关子区域代表性不足。尽管如此,环境保护一直是RS社区的一个重要话题,RS是支持保护政策和战略应对森林砍伐和生物多样性丧失等挑战的有用工具[7],[8],[9]。因此,在这篇文章中,为了满足更好地了解我们生活的自然的迫切需要,我们介绍了一项新的荒野地图绘制任务,并宣传了MapInWild数据集[10]——一个多模式大规模基准数据集,专为从太空进行荒野地图绘制而设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MapInWild: A remote sensing dataset to address the question of what makes nature wild [Software and Data Sets]
The advancement in deep learning (DL) techniques has led to a notable increase in the number and size of annotated datasets in a variety of domains, with remote sensing (RS) being no exception [1]. Also, an increase in Earth observation (EO) missions and the easy access to globally available and free geodata have opened up new research opportunities. Although numerous RS datasets have been published in the past years [2], [3], [4], [5], [6], most of them addressed tasks concerning man-made environments, such as building footprint extraction and road network classification, leaving the environmental and ecology-related subareas of RS underrepresented. Nevertheless, environmental protection has always been an important topic in the RS community, with RS being a useful tool to support conservation policies and strategies combating challenges such as deforestation and loss of biodiversity [7], [8], [9]. Thus, in this article, to meet the pressing need to better understand the nature we are living in, we introduce a novel task of wilderness mapping and advertise the MapInWild dataset [10]—a multimodal large-scale benchmark dataset designed for the task of wilderness mapping from space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Geoscience and Remote Sensing Magazine
IEEE Geoscience and Remote Sensing Magazine Computer Science-General Computer Science
CiteScore
20.50
自引率
2.70%
发文量
58
期刊介绍: The IEEE Geoscience and Remote Sensing Magazine (GRSM) serves as an informative platform, keeping readers abreast of activities within the IEEE GRS Society, its technical committees, and chapters. In addition to updating readers on society-related news, GRSM plays a crucial role in educating and informing its audience through various channels. These include:Technical Papers,International Remote Sensing Activities,Contributions on Education Activities,Industrial and University Profiles,Conference News,Book Reviews,Calendar of Important Events.
期刊最新文献
ODinMJ: A red, green, blue-thermal dataset for mountain jungle object detection An Integration of Natural Language and Hyperspectral Imaging: A review Generative Artificial Intelligence Meets Synthetic Aperture Radar: A survey A Review of Individual Tree Crown Detection and Delineation From Optical Remote Sensing Images: Current progress and future Microwave Photonic Synthetic Aperture Radar: Systems, experiments, and imaging processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1