放射成像中深度学习的透明度:从定量到定性的人工智能

Y. Hayashi
{"title":"放射成像中深度学习的透明度:从定量到定性的人工智能","authors":"Y. Hayashi","doi":"10.21037/jmai.2019.09.0","DOIUrl":null,"url":null,"abstract":"In the near future, nearly every type of clinician, from paramedics to certificated medical specialists, will be expected to utilize artificial intelligence (AI) technology, and deep learning (DL) in particular (1). In terms of exceeding human ability, DL has been the backbone of computer science. DL mostly involves automated feature extraction using deep neural networks (DNNs), which can aid in the classification and discrimination of medical images, including mammograms, skin lesions, pathological slides, radiological images, and retinal fundus photographs.","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Toward the transparency of deep learning in radiological imaging: beyond quantitative to qualitative artificial intelligence\",\"authors\":\"Y. Hayashi\",\"doi\":\"10.21037/jmai.2019.09.0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the near future, nearly every type of clinician, from paramedics to certificated medical specialists, will be expected to utilize artificial intelligence (AI) technology, and deep learning (DL) in particular (1). In terms of exceeding human ability, DL has been the backbone of computer science. DL mostly involves automated feature extraction using deep neural networks (DNNs), which can aid in the classification and discrimination of medical images, including mammograms, skin lesions, pathological slides, radiological images, and retinal fundus photographs.\",\"PeriodicalId\":73815,\"journal\":{\"name\":\"Journal of medical artificial intelligence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of medical artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21037/jmai.2019.09.0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/jmai.2019.09.0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在不久的将来,几乎每种类型的临床医生,从护理人员到认证的医学专家,都将有望利用人工智能(AI)技术,尤其是深度学习(DL)(1)。在超越人类能力方面,DL一直是计算机科学的支柱。DL主要涉及使用深度神经网络(DNN)的自动特征提取,这可以帮助对医学图像进行分类和区分,包括乳房X光片、皮肤病变、病理切片、放射学图像和视网膜眼底照片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward the transparency of deep learning in radiological imaging: beyond quantitative to qualitative artificial intelligence
In the near future, nearly every type of clinician, from paramedics to certificated medical specialists, will be expected to utilize artificial intelligence (AI) technology, and deep learning (DL) in particular (1). In terms of exceeding human ability, DL has been the backbone of computer science. DL mostly involves automated feature extraction using deep neural networks (DNNs), which can aid in the classification and discrimination of medical images, including mammograms, skin lesions, pathological slides, radiological images, and retinal fundus photographs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
期刊最新文献
Artificial intelligence in periodontology and implantology—a narrative review Exploring the capabilities and limitations of large language models in nuclear medicine knowledge with primary focus on GPT-3.5, GPT-4 and Google Bard Hybrid artificial intelligence outcome prediction using features extraction from stress perfusion cardiac magnetic resonance images and electronic health records Analysis of factors influencing maternal mortality and newborn health—a machine learning approach Efficient glioma grade prediction using learned features extracted from convolutional neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1