{"title":"以水玻璃为硅源制备的珊瑚状碳化硅气凝胶复合材料的微波吸收和热性能","authors":"Xinyuan Zhang, Chenkang Xia, Weihai Liu, Mingyuan Hao, Yang Miao, Feng Gao","doi":"10.1007/s12613-023-2605-x","DOIUrl":null,"url":null,"abstract":"<div><p>As a heat-resistant wave-absorbing material, silicon carbide (SiC) aerogel has become a research hotspot at present. However, the most common silicon sources are organosilanes, which are costly and toxic. In this work, SiC aerogels were successfully prepared by using water glass as the silicon source. Specifically, the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process, and the effect on SiC aerogel microwave absorption properties was investigated. The SiC aerogels prepared with Si:C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity, with a minimum reflection loss value of −46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz. They also have good physical properties, such as the density of 0.0444 g/cm<sup>3</sup>, the thermal conductivity of 0.0621 W/(m·K), and the specific surface area of 1099 m<sup>2</sup>/g. These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 7","pages":"1375 - 1387"},"PeriodicalIF":5.6000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microwave absorption and thermal properties of coral-like SiC aerogel composites prepared by water glass as a silicon source\",\"authors\":\"Xinyuan Zhang, Chenkang Xia, Weihai Liu, Mingyuan Hao, Yang Miao, Feng Gao\",\"doi\":\"10.1007/s12613-023-2605-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a heat-resistant wave-absorbing material, silicon carbide (SiC) aerogel has become a research hotspot at present. However, the most common silicon sources are organosilanes, which are costly and toxic. In this work, SiC aerogels were successfully prepared by using water glass as the silicon source. Specifically, the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process, and the effect on SiC aerogel microwave absorption properties was investigated. The SiC aerogels prepared with Si:C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity, with a minimum reflection loss value of −46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz. They also have good physical properties, such as the density of 0.0444 g/cm<sup>3</sup>, the thermal conductivity of 0.0621 W/(m·K), and the specific surface area of 1099 m<sup>2</sup>/g. These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers.</p></div>\",\"PeriodicalId\":14030,\"journal\":{\"name\":\"International Journal of Minerals, Metallurgy, and Materials\",\"volume\":\"30 7\",\"pages\":\"1375 - 1387\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Minerals, Metallurgy, and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12613-023-2605-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2605-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microwave absorption and thermal properties of coral-like SiC aerogel composites prepared by water glass as a silicon source
As a heat-resistant wave-absorbing material, silicon carbide (SiC) aerogel has become a research hotspot at present. However, the most common silicon sources are organosilanes, which are costly and toxic. In this work, SiC aerogels were successfully prepared by using water glass as the silicon source. Specifically, the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process, and the effect on SiC aerogel microwave absorption properties was investigated. The SiC aerogels prepared with Si:C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity, with a minimum reflection loss value of −46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz. They also have good physical properties, such as the density of 0.0444 g/cm3, the thermal conductivity of 0.0621 W/(m·K), and the specific surface area of 1099 m2/g. These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers.
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.