{"title":"具有时间相关边界条件的cu -水纳米流体在过去无限垂直板上的MHD自然对流","authors":"S. Molli, K. Naikoti","doi":"10.36963/ijtst.2020070404","DOIUrl":null,"url":null,"abstract":"In this paper, unsteady electrically conducting, incompressible, heat and mass transfer Magnetohydrodynamic free convective fluid flow with Cu-nanoparticles over a vertical plate embedded in a porous medium and variable boundary conditions are considered. The governing PDE's have been converted to non-dimensional equations then solved by FET for velocity, temperature and concentration profiles with the influence of buoyancy force due to heat and mass transfer, Prandtl and Schmidt number , time, magnetic and chemical reaction parameter in case of pure fluid and Cu-water nanofluid. The Cu-water nanofluid velocity is low than pure fluid, these are presented through graphical form . Also presented the local Skin-friction coefficient, rate of heat and mass transfer and code of validation through tabular forms.","PeriodicalId":36637,"journal":{"name":"International Journal of Thermofluid Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MHD Natural Convective Flow of Cu-Water Nanofluid over a Past Infinite Vertical Plate with the Presence of Time Dependent Boundary Condition\",\"authors\":\"S. Molli, K. Naikoti\",\"doi\":\"10.36963/ijtst.2020070404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, unsteady electrically conducting, incompressible, heat and mass transfer Magnetohydrodynamic free convective fluid flow with Cu-nanoparticles over a vertical plate embedded in a porous medium and variable boundary conditions are considered. The governing PDE's have been converted to non-dimensional equations then solved by FET for velocity, temperature and concentration profiles with the influence of buoyancy force due to heat and mass transfer, Prandtl and Schmidt number , time, magnetic and chemical reaction parameter in case of pure fluid and Cu-water nanofluid. The Cu-water nanofluid velocity is low than pure fluid, these are presented through graphical form . Also presented the local Skin-friction coefficient, rate of heat and mass transfer and code of validation through tabular forms.\",\"PeriodicalId\":36637,\"journal\":{\"name\":\"International Journal of Thermofluid Science and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluid Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36963/ijtst.2020070404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluid Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36963/ijtst.2020070404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
MHD Natural Convective Flow of Cu-Water Nanofluid over a Past Infinite Vertical Plate with the Presence of Time Dependent Boundary Condition
In this paper, unsteady electrically conducting, incompressible, heat and mass transfer Magnetohydrodynamic free convective fluid flow with Cu-nanoparticles over a vertical plate embedded in a porous medium and variable boundary conditions are considered. The governing PDE's have been converted to non-dimensional equations then solved by FET for velocity, temperature and concentration profiles with the influence of buoyancy force due to heat and mass transfer, Prandtl and Schmidt number , time, magnetic and chemical reaction parameter in case of pure fluid and Cu-water nanofluid. The Cu-water nanofluid velocity is low than pure fluid, these are presented through graphical form . Also presented the local Skin-friction coefficient, rate of heat and mass transfer and code of validation through tabular forms.