多模和巴拿赫格

IF 1.5 3区 数学 Q1 MATHEMATICS Dissertationes Mathematicae Pub Date : 2017-07-01 DOI:10.4064/DM755-11-2016
H. Dales, N. Laustsen, T. Oikhberg, V. G. Troitsky
{"title":"多模和巴拿赫格","authors":"H. Dales, N. Laustsen, T. Oikhberg, V. G. Troitsky","doi":"10.4064/DM755-11-2016","DOIUrl":null,"url":null,"abstract":"In 2012, Dales and Polyakov introduced the concepts of multi-norms and dual multi-norms based on a Banach space. Particular examples are the lattice multi-norm p} ̈ }Lnq and the dual lattice multi-norm p} ̈ } n q based on a Banach lattice. Here we extend these notions to cover ‘p–multi-norms’ for 1 ď p ď 8, where 8–multi-norms and 1–multi-norms correspond to multinorms and dual multi-norms, respectively. We shall prove two representation theorems. First we modify a theorem of Pisier to show that an arbitrary multi-normed space can be represented as ppY , } ̈ }Lnq : n P Nq, where Y is a closed subspace of a Banach lattice; we then give a version for certain p–multi-norms. Second, we obtain a dual version of this result, showing that an arbitrary dual multi-normed space can be represented as pppX{Y q, } ̈ } n q : n P Nq, where Y is a closed subspace of a Banach lattice X; again we give a version for certain p–multi-norms. We shall discuss several examples of p–multi-norms, including the weak p–summing norm and its dual and the canonical lattice p–multi-norm based on a Banach lattice. We shall determine the Banach spaces E such that the p–sum power-norm based on E is a p–multi-norm. This relies on a famous theorem of Kwapień; we shall present a simplified proof of this result. We shall relate p–multi-normed spaces to certain tensor products. Our representation theorems depend on the notion of ‘strong’ p–multi-norms, and we shall define these and discuss when p–multi-norms and strong p–multi-norms pass to subspaces, quotients, and duals; we shall also consider whether these multi-norms are preserved when we interpolate between couples of p–multi-normed spaces. We shall discuss multi-bounded operators between p–multi-normed spaces, and identify the classes of these spaces in some cases, in particular for spaces of operators between Banach lattices taken with their canonical lattice p–multi-norms. Acknowledgements. The authors are grateful to the London Mathematical Society for the award of Scheme 2 grant 21202 that allowed Troitsky to come to Lancaster in May 2013; to the Fields Institute in Toronto, for invitations to Dales, Laustsen, and Troitsky to participate in the Thematic Program on Abstract Harmonic Analysis, Banach and Operator Algebras in March and April, 2014; to the Lorentz Center in Leiden for invitations to Dales, Laustsen, and Troitsky to participate in a meeting on Ordered Banach Algebras in July, 2014. Oikhberg acknowledges with thanks the support of the Simons Foundation Travel Grant 210060, and Troitsky acknowledges with thanks the support of an NSERC grant. 2000 Mathematics Subject Classification: Primary 46B42, 46B20; secondary 46B28, 46B70.","PeriodicalId":51016,"journal":{"name":"Dissertationes Mathematicae","volume":"524 1","pages":"1-115"},"PeriodicalIF":1.5000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Multi-norms and Banach lattices\",\"authors\":\"H. Dales, N. Laustsen, T. Oikhberg, V. G. Troitsky\",\"doi\":\"10.4064/DM755-11-2016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2012, Dales and Polyakov introduced the concepts of multi-norms and dual multi-norms based on a Banach space. Particular examples are the lattice multi-norm p} ̈ }Lnq and the dual lattice multi-norm p} ̈ } n q based on a Banach lattice. Here we extend these notions to cover ‘p–multi-norms’ for 1 ď p ď 8, where 8–multi-norms and 1–multi-norms correspond to multinorms and dual multi-norms, respectively. We shall prove two representation theorems. First we modify a theorem of Pisier to show that an arbitrary multi-normed space can be represented as ppY , } ̈ }Lnq : n P Nq, where Y is a closed subspace of a Banach lattice; we then give a version for certain p–multi-norms. Second, we obtain a dual version of this result, showing that an arbitrary dual multi-normed space can be represented as pppX{Y q, } ̈ } n q : n P Nq, where Y is a closed subspace of a Banach lattice X; again we give a version for certain p–multi-norms. We shall discuss several examples of p–multi-norms, including the weak p–summing norm and its dual and the canonical lattice p–multi-norm based on a Banach lattice. We shall determine the Banach spaces E such that the p–sum power-norm based on E is a p–multi-norm. This relies on a famous theorem of Kwapień; we shall present a simplified proof of this result. We shall relate p–multi-normed spaces to certain tensor products. Our representation theorems depend on the notion of ‘strong’ p–multi-norms, and we shall define these and discuss when p–multi-norms and strong p–multi-norms pass to subspaces, quotients, and duals; we shall also consider whether these multi-norms are preserved when we interpolate between couples of p–multi-normed spaces. We shall discuss multi-bounded operators between p–multi-normed spaces, and identify the classes of these spaces in some cases, in particular for spaces of operators between Banach lattices taken with their canonical lattice p–multi-norms. Acknowledgements. The authors are grateful to the London Mathematical Society for the award of Scheme 2 grant 21202 that allowed Troitsky to come to Lancaster in May 2013; to the Fields Institute in Toronto, for invitations to Dales, Laustsen, and Troitsky to participate in the Thematic Program on Abstract Harmonic Analysis, Banach and Operator Algebras in March and April, 2014; to the Lorentz Center in Leiden for invitations to Dales, Laustsen, and Troitsky to participate in a meeting on Ordered Banach Algebras in July, 2014. Oikhberg acknowledges with thanks the support of the Simons Foundation Travel Grant 210060, and Troitsky acknowledges with thanks the support of an NSERC grant. 2000 Mathematics Subject Classification: Primary 46B42, 46B20; secondary 46B28, 46B70.\",\"PeriodicalId\":51016,\"journal\":{\"name\":\"Dissertationes Mathematicae\",\"volume\":\"524 1\",\"pages\":\"1-115\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dissertationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/DM755-11-2016\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissertationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/DM755-11-2016","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

摘要

2012年,Dales和Polyakov引入了基于Banach空间的多范数和对偶多范数的概念。具体的例子是基于Banach格的格多范数p}É}Lnq和对偶格多范数p}É}nq。在这里,我们将这些概念扩展到1ďpď8的“p–多范数”,其中8–多范数和1–多范数分别对应于多范数和对偶多范数。我们将证明两个表示定理。首先,我们修改了Pisier的一个定理,证明了任意多赋范空间可以表示为ppY,}}Lnq:nPNq,其中Y是Banach格的闭子空间;然后,我们给出了某些p-多重范数的一个版本。其次,我们得到了这一结果的对偶版本,证明了任意对偶多重赋范空间可以表示为pppX{Yq,}}Nq:nPNq,其中Y是Banach格X的闭子空间;我们再次给出了某些p-多重范数的一个版本。我们将讨论p–多重范数的几个例子,包括弱p–求和范数及其对偶和基于Banach格的正则格p–多重模。我们将确定Banach空间E,使得基于E的p-和幂范数是p-多重范数。这依赖于著名的Kwapień定理;我们将给出这个结果的简化证明。我们将把p–多赋范空间与某些张量积联系起来。我们的表示定理依赖于“强”p-多范数的概念,我们将定义这些,并讨论p-多范数和强p-多范数何时传递到子空间、商和对偶;当我们在p-多赋范空间对之间插值时,我们还将考虑这些多范数是否被保留。我们将讨论p–多赋范空间之间的多有界算子,并在某些情况下识别这些空间的类,特别是对于Banach格之间的算子空间及其正则格p–多范数。鸣谢。作者感谢伦敦数学学会授予计划2拨款21202,使Troitsky于2013年5月来到兰开斯特;多伦多菲尔德研究所,邀请Dales、Laustsen和Troitsky参加2014年3月和4月的抽象调和分析、Banach和算子代数专题项目;邀请Dales、Laustsen和Troitsky参加2014年7月举行的有序Banach代数会议。Oikhberg感谢Simons基金会旅游拨款210060的支持,Troitsky感谢NSERC拨款的支持。2000年数学学科分类:小学46B42、46B20;次级46B28、46B70。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-norms and Banach lattices
In 2012, Dales and Polyakov introduced the concepts of multi-norms and dual multi-norms based on a Banach space. Particular examples are the lattice multi-norm p} ̈ }Lnq and the dual lattice multi-norm p} ̈ } n q based on a Banach lattice. Here we extend these notions to cover ‘p–multi-norms’ for 1 ď p ď 8, where 8–multi-norms and 1–multi-norms correspond to multinorms and dual multi-norms, respectively. We shall prove two representation theorems. First we modify a theorem of Pisier to show that an arbitrary multi-normed space can be represented as ppY , } ̈ }Lnq : n P Nq, where Y is a closed subspace of a Banach lattice; we then give a version for certain p–multi-norms. Second, we obtain a dual version of this result, showing that an arbitrary dual multi-normed space can be represented as pppX{Y q, } ̈ } n q : n P Nq, where Y is a closed subspace of a Banach lattice X; again we give a version for certain p–multi-norms. We shall discuss several examples of p–multi-norms, including the weak p–summing norm and its dual and the canonical lattice p–multi-norm based on a Banach lattice. We shall determine the Banach spaces E such that the p–sum power-norm based on E is a p–multi-norm. This relies on a famous theorem of Kwapień; we shall present a simplified proof of this result. We shall relate p–multi-normed spaces to certain tensor products. Our representation theorems depend on the notion of ‘strong’ p–multi-norms, and we shall define these and discuss when p–multi-norms and strong p–multi-norms pass to subspaces, quotients, and duals; we shall also consider whether these multi-norms are preserved when we interpolate between couples of p–multi-normed spaces. We shall discuss multi-bounded operators between p–multi-normed spaces, and identify the classes of these spaces in some cases, in particular for spaces of operators between Banach lattices taken with their canonical lattice p–multi-norms. Acknowledgements. The authors are grateful to the London Mathematical Society for the award of Scheme 2 grant 21202 that allowed Troitsky to come to Lancaster in May 2013; to the Fields Institute in Toronto, for invitations to Dales, Laustsen, and Troitsky to participate in the Thematic Program on Abstract Harmonic Analysis, Banach and Operator Algebras in March and April, 2014; to the Lorentz Center in Leiden for invitations to Dales, Laustsen, and Troitsky to participate in a meeting on Ordered Banach Algebras in July, 2014. Oikhberg acknowledges with thanks the support of the Simons Foundation Travel Grant 210060, and Troitsky acknowledges with thanks the support of an NSERC grant. 2000 Mathematics Subject Classification: Primary 46B42, 46B20; secondary 46B28, 46B70.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
8
审稿时长
>12 weeks
期刊介绍: DISSERTATIONES MATHEMATICAE publishes long research papers (preferably 50-100 pages) in any area of mathematics. An important feature of papers accepted for publication should be their utility for a broad readership of specialists in the domain. In particular, the papers should be to some reasonable extent self-contained. The paper version is considered as primary. The following criteria are taken into account in the reviewing procedure: correctness, mathematical level, mathematical novelty, utility for a broad readership of specialists in the domain, language and editorial aspects. The Editors have adopted appropriate procedures to avoid ghostwriting and guest authorship.
期刊最新文献
Continuous 2-colorings and topological dynamics On bounded coordinates in GNS spaces Product decompositions of semigroups induced by action pairs On the $(n+3)$-webs by rational curves induced by the forgetful maps on the moduli spaces $\mathcal M_{0,n+3}$ Isolated points of spaces of homomorphisms from ordered AL-algebras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1