J. Spencer, S. Richard, A. Bykerk-Kauffman, K. Constenius, V. Valencia
{"title":"美国亚利桑那州东南部大卡塔利娜变质核杂岩构造伸展的构造、年代学、运动学和地球动力学","authors":"J. Spencer, S. Richard, A. Bykerk-Kauffman, K. Constenius, V. Valencia","doi":"10.1130/ges02485.1","DOIUrl":null,"url":null,"abstract":"Oligocene and early Miocene displacement on the Catalina–San Pedro detachment fault and its northern correlatives uncovered mylonitic fabrics that form the greater Catalina metamorphic core complex in southeastern Arizona, USA. Gently to moderately dipping mylonitic foliations in the complex are strongly lineated, with a lineation-azimuth average of 064–244° and dominantly top-southwest shear sense over the entire 115-km-long mylonite belt. Reconstruction of detachment fault displacement based on a variety of features indicates 40–60 km of displacement, with greater displacement in more southern areas. Widespread 26–28 Ma volcanism during early extensional basin genesis was followed by 24–26 Ma granitoid magmatism. Cooling of footwall mylonites continued until 22–24 Ma, as indicated by 40Ar/39Ar mica dates. Lower temperature thermochronometers suggest that footwall exhumation was still underway at ca. 20 Ma. Tectonic reconstruction places a variety of unmetamorphosed supracrustal units in the Tucson and Silver Bell Mountains above equivalent units that were metamorphosed and penetratively deformed in the Tortolita and Santa Catalina Mountains. This restored juxtaposition is interpreted as a consequence of older Laramide thrust burial of the deformed units, with northeast-directed thrusting occurring along the Wildhorse Mountain thrust in the Rincon Mountains and related but largely concealed thrusts to the northwest. Effective extensional exhumation of lower plate rocks resulted from a general lack of internal extension of the upper plate wedge. This is attributed to a stable sliding regime during the entire period of extension, with metamorphic core complex inflation by deep crustal flow leading to maintenance of wedge surface slope and detachment fault dip that favored stable sliding rather than internal wedge extension.","PeriodicalId":55100,"journal":{"name":"Geosphere","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure, chronology, kinematics, and geodynamics of tectonic extension in the greater Catalina metamorphic core complex, southeastern Arizona, USA\",\"authors\":\"J. Spencer, S. Richard, A. Bykerk-Kauffman, K. Constenius, V. Valencia\",\"doi\":\"10.1130/ges02485.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oligocene and early Miocene displacement on the Catalina–San Pedro detachment fault and its northern correlatives uncovered mylonitic fabrics that form the greater Catalina metamorphic core complex in southeastern Arizona, USA. Gently to moderately dipping mylonitic foliations in the complex are strongly lineated, with a lineation-azimuth average of 064–244° and dominantly top-southwest shear sense over the entire 115-km-long mylonite belt. Reconstruction of detachment fault displacement based on a variety of features indicates 40–60 km of displacement, with greater displacement in more southern areas. Widespread 26–28 Ma volcanism during early extensional basin genesis was followed by 24–26 Ma granitoid magmatism. Cooling of footwall mylonites continued until 22–24 Ma, as indicated by 40Ar/39Ar mica dates. Lower temperature thermochronometers suggest that footwall exhumation was still underway at ca. 20 Ma. Tectonic reconstruction places a variety of unmetamorphosed supracrustal units in the Tucson and Silver Bell Mountains above equivalent units that were metamorphosed and penetratively deformed in the Tortolita and Santa Catalina Mountains. This restored juxtaposition is interpreted as a consequence of older Laramide thrust burial of the deformed units, with northeast-directed thrusting occurring along the Wildhorse Mountain thrust in the Rincon Mountains and related but largely concealed thrusts to the northwest. Effective extensional exhumation of lower plate rocks resulted from a general lack of internal extension of the upper plate wedge. This is attributed to a stable sliding regime during the entire period of extension, with metamorphic core complex inflation by deep crustal flow leading to maintenance of wedge surface slope and detachment fault dip that favored stable sliding rather than internal wedge extension.\",\"PeriodicalId\":55100,\"journal\":{\"name\":\"Geosphere\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1130/ges02485.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/ges02485.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Structure, chronology, kinematics, and geodynamics of tectonic extension in the greater Catalina metamorphic core complex, southeastern Arizona, USA
Oligocene and early Miocene displacement on the Catalina–San Pedro detachment fault and its northern correlatives uncovered mylonitic fabrics that form the greater Catalina metamorphic core complex in southeastern Arizona, USA. Gently to moderately dipping mylonitic foliations in the complex are strongly lineated, with a lineation-azimuth average of 064–244° and dominantly top-southwest shear sense over the entire 115-km-long mylonite belt. Reconstruction of detachment fault displacement based on a variety of features indicates 40–60 km of displacement, with greater displacement in more southern areas. Widespread 26–28 Ma volcanism during early extensional basin genesis was followed by 24–26 Ma granitoid magmatism. Cooling of footwall mylonites continued until 22–24 Ma, as indicated by 40Ar/39Ar mica dates. Lower temperature thermochronometers suggest that footwall exhumation was still underway at ca. 20 Ma. Tectonic reconstruction places a variety of unmetamorphosed supracrustal units in the Tucson and Silver Bell Mountains above equivalent units that were metamorphosed and penetratively deformed in the Tortolita and Santa Catalina Mountains. This restored juxtaposition is interpreted as a consequence of older Laramide thrust burial of the deformed units, with northeast-directed thrusting occurring along the Wildhorse Mountain thrust in the Rincon Mountains and related but largely concealed thrusts to the northwest. Effective extensional exhumation of lower plate rocks resulted from a general lack of internal extension of the upper plate wedge. This is attributed to a stable sliding regime during the entire period of extension, with metamorphic core complex inflation by deep crustal flow leading to maintenance of wedge surface slope and detachment fault dip that favored stable sliding rather than internal wedge extension.
期刊介绍:
Geosphere is GSA''s ambitious, online-only publication that addresses the growing need for timely publication of research results, data, software, and educational developments in ways that cannot be addressed by traditional formats. The journal''s rigorously peer-reviewed, high-quality research papers target an international audience in all geoscience fields. Its innovative format encourages extensive use of color, animations, interactivity, and oversize figures (maps, cross sections, etc.), and provides easy access to resources such as GIS databases, data archives, and modeling results. Geosphere''s broad scope and variety of contributions is a refreshing addition to traditional journals.