Thomas J. Samojedny, Claudia Garnica-Díaz, Dena L. Grossenbacher, G. Adamidis, P. Dimitrakopoulos, S. Siebert, M. Spasojevic, C. Hulshof, N. Rajakaruna
{"title":"比叶面积在超基性土壤上比在邻近的非超基性土壤上低","authors":"Thomas J. Samojedny, Claudia Garnica-Díaz, Dena L. Grossenbacher, G. Adamidis, P. Dimitrakopoulos, S. Siebert, M. Spasojevic, C. Hulshof, N. Rajakaruna","doi":"10.1080/17550874.2022.2160673","DOIUrl":null,"url":null,"abstract":"ABSTRACT Background Specific leaf area (SLA) is a core trait within the leaf economic spectrum that describes differences in plant performance and productivity. Research on the sources of variation in the leaf economic spectrum and SLA has primarily focused on climate. Much less is known about SLA variation across unusual edaphic environments, such as on ultramafic soils. Aims To determine the role of ultramafic soils as a driver of SLA variation. Methods We measured SLA for dominant species on paired ultramafic and non-ultramafic soils in five biogeographically distinct regions around the globe and compared mean SLA values to globally reported values. Results SLA was lower on ultramafic than on non-ultramafic soils in all regions, except Puerto Rico, and both climate and soil were important drivers of SLA. For three of the five regions, SLA values on ultramafic soils were lower than the global average. Conclusions Soils can be a major driver of SLA along with climate. Low SLA on ultramafic soil points to selection for stress resistance strategies. Furthermore, in some bioregions, SLA values on ultramafic soils were among the lowest on the planet and thus represent globally rare phenotypes that should be conserved within these unique edaphic habitats.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Specific leaf area is lower on ultramafic than on neighbouring non-ultramafic soils\",\"authors\":\"Thomas J. Samojedny, Claudia Garnica-Díaz, Dena L. Grossenbacher, G. Adamidis, P. Dimitrakopoulos, S. Siebert, M. Spasojevic, C. Hulshof, N. Rajakaruna\",\"doi\":\"10.1080/17550874.2022.2160673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Background Specific leaf area (SLA) is a core trait within the leaf economic spectrum that describes differences in plant performance and productivity. Research on the sources of variation in the leaf economic spectrum and SLA has primarily focused on climate. Much less is known about SLA variation across unusual edaphic environments, such as on ultramafic soils. Aims To determine the role of ultramafic soils as a driver of SLA variation. Methods We measured SLA for dominant species on paired ultramafic and non-ultramafic soils in five biogeographically distinct regions around the globe and compared mean SLA values to globally reported values. Results SLA was lower on ultramafic than on non-ultramafic soils in all regions, except Puerto Rico, and both climate and soil were important drivers of SLA. For three of the five regions, SLA values on ultramafic soils were lower than the global average. Conclusions Soils can be a major driver of SLA along with climate. Low SLA on ultramafic soil points to selection for stress resistance strategies. Furthermore, in some bioregions, SLA values on ultramafic soils were among the lowest on the planet and thus represent globally rare phenotypes that should be conserved within these unique edaphic habitats.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17550874.2022.2160673\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17550874.2022.2160673","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Specific leaf area is lower on ultramafic than on neighbouring non-ultramafic soils
ABSTRACT Background Specific leaf area (SLA) is a core trait within the leaf economic spectrum that describes differences in plant performance and productivity. Research on the sources of variation in the leaf economic spectrum and SLA has primarily focused on climate. Much less is known about SLA variation across unusual edaphic environments, such as on ultramafic soils. Aims To determine the role of ultramafic soils as a driver of SLA variation. Methods We measured SLA for dominant species on paired ultramafic and non-ultramafic soils in five biogeographically distinct regions around the globe and compared mean SLA values to globally reported values. Results SLA was lower on ultramafic than on non-ultramafic soils in all regions, except Puerto Rico, and both climate and soil were important drivers of SLA. For three of the five regions, SLA values on ultramafic soils were lower than the global average. Conclusions Soils can be a major driver of SLA along with climate. Low SLA on ultramafic soil points to selection for stress resistance strategies. Furthermore, in some bioregions, SLA values on ultramafic soils were among the lowest on the planet and thus represent globally rare phenotypes that should be conserved within these unique edaphic habitats.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.