不同地震记录下受拉织物结构的时程分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2021-02-01 DOI:10.12989/EAS.2021.20.2.161
J. Valdés-Vázquez, A. García-Soto, M. Chiumenti, Alejandro Hernandez-Martinez
{"title":"不同地震记录下受拉织物结构的时程分析","authors":"J. Valdés-Vázquez, A. García-Soto, M. Chiumenti, Alejandro Hernandez-Martinez","doi":"10.12989/EAS.2021.20.2.161","DOIUrl":null,"url":null,"abstract":"The structural behavior of a tensile fabric structure, known as hypar, is investigated. Seismic-induced stresses in the fabric and axial forces in masts and cables are obtained using accelerograms recorded at different regions of the world. Time-history analysis using each recording are performed for the hypar by using finite element simulation. It is found that while the seismic stresses in the fabric are not critical for design, the seismic tensile forces in cables and the seismic compressive forces in masts should not be disregarded by designers. This is important, because the seismic design is usually not considered so relevant, as compared for instance with wind design, for these types of structures. The most relevant findings of this study are: 1) dynamic axial forces can have an increase of up to twice the static loading when the TFS is subjected to seismic demands, 2) large peak ground accelerations seem to be the key parameter for significant seismic-induced axial forces, but not clear trend is found to relate such forces with earthquakes and site characteristics and, 3) the inclusion or exclusion of the form-finding in the analysis procedure importantly affects results of seismic stresses in the fabric, but not in the frame.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time history analysis of a tensile fabric structuresubjected to different seismic recordings\",\"authors\":\"J. Valdés-Vázquez, A. García-Soto, M. Chiumenti, Alejandro Hernandez-Martinez\",\"doi\":\"10.12989/EAS.2021.20.2.161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structural behavior of a tensile fabric structure, known as hypar, is investigated. Seismic-induced stresses in the fabric and axial forces in masts and cables are obtained using accelerograms recorded at different regions of the world. Time-history analysis using each recording are performed for the hypar by using finite element simulation. It is found that while the seismic stresses in the fabric are not critical for design, the seismic tensile forces in cables and the seismic compressive forces in masts should not be disregarded by designers. This is important, because the seismic design is usually not considered so relevant, as compared for instance with wind design, for these types of structures. The most relevant findings of this study are: 1) dynamic axial forces can have an increase of up to twice the static loading when the TFS is subjected to seismic demands, 2) large peak ground accelerations seem to be the key parameter for significant seismic-induced axial forces, but not clear trend is found to relate such forces with earthquakes and site characteristics and, 3) the inclusion or exclusion of the form-finding in the analysis procedure importantly affects results of seismic stresses in the fabric, but not in the frame.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/EAS.2021.20.2.161\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/EAS.2021.20.2.161","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了一种被称为hypar的拉伸织物结构的结构行为。利用在世界不同地区记录的加速度图,获得了结构中的地震诱发应力和桅杆和电缆的轴向力。利用有限元模拟对每一次记录进行时程分析。研究发现,虽然结构中的地震应力不是设计的关键,但索的地震拉力和桅杆的地震压缩力是设计人员不可忽视的。这一点很重要,因为与风力设计相比,抗震设计通常被认为与这类结构没有太大关系。本研究最相关的发现是:1)动态轴力可以增加两倍的静态加载时TFS受到地震的要求,2)大型峰值地面加速度似乎是重要的关键参数seismic-induced轴向力,但不清楚趋势发现与地震和网站等相关特征,3)包含或排除在分析过程中重要的是根据织物地震应力的影响结果,但不会在框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time history analysis of a tensile fabric structuresubjected to different seismic recordings
The structural behavior of a tensile fabric structure, known as hypar, is investigated. Seismic-induced stresses in the fabric and axial forces in masts and cables are obtained using accelerograms recorded at different regions of the world. Time-history analysis using each recording are performed for the hypar by using finite element simulation. It is found that while the seismic stresses in the fabric are not critical for design, the seismic tensile forces in cables and the seismic compressive forces in masts should not be disregarded by designers. This is important, because the seismic design is usually not considered so relevant, as compared for instance with wind design, for these types of structures. The most relevant findings of this study are: 1) dynamic axial forces can have an increase of up to twice the static loading when the TFS is subjected to seismic demands, 2) large peak ground accelerations seem to be the key parameter for significant seismic-induced axial forces, but not clear trend is found to relate such forces with earthquakes and site characteristics and, 3) the inclusion or exclusion of the form-finding in the analysis procedure importantly affects results of seismic stresses in the fabric, but not in the frame.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1