面向HPC的典型工作流在气候和天气预测中的机器学习应用

IF 1.3 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Intelligence Pub Date : 2022-03-07 DOI:10.1162/dint_a_00131
A. Mozaffari, M. Langguth, Bing Gong, Jessica Ahring, Adrian Rojas Campos, Pascal Nieters, Otoniel José Campos Escobar, M. Wittenbrink, P. Baumann, M. Schultz
{"title":"面向HPC的典型工作流在气候和天气预测中的机器学习应用","authors":"A. Mozaffari, M. Langguth, Bing Gong, Jessica Ahring, Adrian Rojas Campos, Pascal Nieters, Otoniel José Campos Escobar, M. Wittenbrink, P. Baumann, M. Schultz","doi":"10.1162/dint_a_00131","DOIUrl":null,"url":null,"abstract":"Abstract Machine learning (ML) applications in weather and climate are gaining momentum as big data and the immense increase in High-performance computing (HPC) power are paving the way. Ensuring FAIR data and reproducible ML practices are significant challenges for Earth system researchers. Even though the FAIR principle is well known to many scientists, research communities are slow to adopt them. Canonical Workflow Framework for Research (CWFR) provides a platform to ensure the FAIRness and reproducibility of these practices without overwhelming researchers. This conceptual paper envisions a holistic CWFR approach towards ML applications in weather and climate, focusing on HPC and big data. Specifically, we discuss Fair Digital Object (FDO) and Research Object (RO) in the DeepRain project to achieve granular reproducibility. DeepRain is a project that aims to improve precipitation forecast in Germany by using ML. Our concept envisages the raster datacube to provide data harmonization and fast and scalable data access. We suggest the Juypter notebook as a single reproducible experiment. In addition, we envision JuypterHub as a scalable and distributed central platform that connects all these elements and the HPC resources to the researchers via an easy-to-use graphical interface.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"4 1","pages":"271-285"},"PeriodicalIF":1.3000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"HPC-oriented Canonical Workflows for Machine Learning Applications in Climate and Weather Prediction\",\"authors\":\"A. Mozaffari, M. Langguth, Bing Gong, Jessica Ahring, Adrian Rojas Campos, Pascal Nieters, Otoniel José Campos Escobar, M. Wittenbrink, P. Baumann, M. Schultz\",\"doi\":\"10.1162/dint_a_00131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Machine learning (ML) applications in weather and climate are gaining momentum as big data and the immense increase in High-performance computing (HPC) power are paving the way. Ensuring FAIR data and reproducible ML practices are significant challenges for Earth system researchers. Even though the FAIR principle is well known to many scientists, research communities are slow to adopt them. Canonical Workflow Framework for Research (CWFR) provides a platform to ensure the FAIRness and reproducibility of these practices without overwhelming researchers. This conceptual paper envisions a holistic CWFR approach towards ML applications in weather and climate, focusing on HPC and big data. Specifically, we discuss Fair Digital Object (FDO) and Research Object (RO) in the DeepRain project to achieve granular reproducibility. DeepRain is a project that aims to improve precipitation forecast in Germany by using ML. Our concept envisages the raster datacube to provide data harmonization and fast and scalable data access. We suggest the Juypter notebook as a single reproducible experiment. In addition, we envision JuypterHub as a scalable and distributed central platform that connects all these elements and the HPC resources to the researchers via an easy-to-use graphical interface.\",\"PeriodicalId\":34023,\"journal\":{\"name\":\"Data Intelligence\",\"volume\":\"4 1\",\"pages\":\"271-285\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/dint_a_00131\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00131","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

随着大数据和高性能计算(HPC)能力的巨大增长,机器学习(ML)在天气和气候方面的应用正在获得动力。确保公平的数据和可重复的ML实践是地球系统研究人员面临的重大挑战。尽管FAIR原则为许多科学家所熟知,但研究界采用它的速度很慢。研究规范工作流框架(CWFR)提供了一个平台,以确保这些实践的公平性和可重复性,而不会压倒研究人员。这篇概念性论文设想了一种全面的CWFR方法,用于天气和气候中的ML应用,重点是高性能计算和大数据。具体来说,我们讨论了DeepRain项目中的公平数字对象(FDO)和研究对象(RO),以实现颗粒可重复性。DeepRain是一个旨在通过ML改善德国降水预报的项目。我们的概念设想栅格数据集提供数据协调和快速可扩展的数据访问。我们建议Juypter笔记本作为一个单一的可重复的实验。此外,我们将JuypterHub设想为一个可扩展的分布式中央平台,通过一个易于使用的图形界面将所有这些元素和HPC资源连接到研究人员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HPC-oriented Canonical Workflows for Machine Learning Applications in Climate and Weather Prediction
Abstract Machine learning (ML) applications in weather and climate are gaining momentum as big data and the immense increase in High-performance computing (HPC) power are paving the way. Ensuring FAIR data and reproducible ML practices are significant challenges for Earth system researchers. Even though the FAIR principle is well known to many scientists, research communities are slow to adopt them. Canonical Workflow Framework for Research (CWFR) provides a platform to ensure the FAIRness and reproducibility of these practices without overwhelming researchers. This conceptual paper envisions a holistic CWFR approach towards ML applications in weather and climate, focusing on HPC and big data. Specifically, we discuss Fair Digital Object (FDO) and Research Object (RO) in the DeepRain project to achieve granular reproducibility. DeepRain is a project that aims to improve precipitation forecast in Germany by using ML. Our concept envisages the raster datacube to provide data harmonization and fast and scalable data access. We suggest the Juypter notebook as a single reproducible experiment. In addition, we envision JuypterHub as a scalable and distributed central platform that connects all these elements and the HPC resources to the researchers via an easy-to-use graphical interface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data Intelligence
Data Intelligence COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.50
自引率
15.40%
发文量
40
审稿时长
8 weeks
期刊最新文献
The Limitations and Ethical Considerations of ChatGPT Rule Mining Trends from 1987 to 2022: A Bibliometric Analysis and Visualization Classification and quantification of timestamp data quality issues and its impact on data quality outcome BIKAS: Bio-Inspired Knowledge Acquisition and Simulacrum—A Knowledge Database to Support Multifunctional Design Concept Generation Exploring Attentive Siamese LSTM for Low-Resource Text Plagiarism Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1