Alina Meindl, J. Grzybek, A. Petutschnigg, T. Schnabel
{"title":"未经处理的落叶松树皮中的高纯度木质素:一种有效的木质素增值和低价值副产物缓解的绿色方法","authors":"Alina Meindl, J. Grzybek, A. Petutschnigg, T. Schnabel","doi":"10.1080/02773813.2022.2072892","DOIUrl":null,"url":null,"abstract":"Abstract Increasing concerns toward climate change and fossil fuel-based products have opened the race toward viable alternative feedstocks, which could be utilized as alternatives for omnipresent chemicals such as fuels and polymers. Lignin is among one of the most promising candidates. Besides its promising chemical characteristics, it has also been put in the spotlight due to its economic potential for biorefinery profitability and waste reduction. As the timber industry has to fight a constantly growing larch bark by-product stream we decided to investigate its potential capacity as valuable source of biopolymers. Deep eutectic solvents due to their biodegradability, reusability and efficiency have been chosen as the extraction method of choice. The reaction parameters were optimized resulting in a very high lignin yield of 93%. Furthermore, the work-up process was investigated with a focus on quantitative chemical recycling and potential for upscaling to industrial scale. Graphical Abstract","PeriodicalId":17493,"journal":{"name":"Journal of Wood Chemistry and Technology","volume":"42 1","pages":"235 - 243"},"PeriodicalIF":1.7000,"publicationDate":"2022-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High purity lignin from untreated larch bark: an efficient green methodology for lignin valorization and low-value by-product mitigation\",\"authors\":\"Alina Meindl, J. Grzybek, A. Petutschnigg, T. Schnabel\",\"doi\":\"10.1080/02773813.2022.2072892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Increasing concerns toward climate change and fossil fuel-based products have opened the race toward viable alternative feedstocks, which could be utilized as alternatives for omnipresent chemicals such as fuels and polymers. Lignin is among one of the most promising candidates. Besides its promising chemical characteristics, it has also been put in the spotlight due to its economic potential for biorefinery profitability and waste reduction. As the timber industry has to fight a constantly growing larch bark by-product stream we decided to investigate its potential capacity as valuable source of biopolymers. Deep eutectic solvents due to their biodegradability, reusability and efficiency have been chosen as the extraction method of choice. The reaction parameters were optimized resulting in a very high lignin yield of 93%. Furthermore, the work-up process was investigated with a focus on quantitative chemical recycling and potential for upscaling to industrial scale. Graphical Abstract\",\"PeriodicalId\":17493,\"journal\":{\"name\":\"Journal of Wood Chemistry and Technology\",\"volume\":\"42 1\",\"pages\":\"235 - 243\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wood Chemistry and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02773813.2022.2072892\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02773813.2022.2072892","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
High purity lignin from untreated larch bark: an efficient green methodology for lignin valorization and low-value by-product mitigation
Abstract Increasing concerns toward climate change and fossil fuel-based products have opened the race toward viable alternative feedstocks, which could be utilized as alternatives for omnipresent chemicals such as fuels and polymers. Lignin is among one of the most promising candidates. Besides its promising chemical characteristics, it has also been put in the spotlight due to its economic potential for biorefinery profitability and waste reduction. As the timber industry has to fight a constantly growing larch bark by-product stream we decided to investigate its potential capacity as valuable source of biopolymers. Deep eutectic solvents due to their biodegradability, reusability and efficiency have been chosen as the extraction method of choice. The reaction parameters were optimized resulting in a very high lignin yield of 93%. Furthermore, the work-up process was investigated with a focus on quantitative chemical recycling and potential for upscaling to industrial scale. Graphical Abstract
期刊介绍:
The Journal of Wood Chemistry and Technology (JWCT) is focused on the rapid publication of research advances in the chemistry of bio-based materials and products, including all aspects of wood-based polymers, chemicals, materials, and technology. JWCT provides an international forum for researchers and manufacturers working in wood-based biopolymers and chemicals, synthesis and characterization, as well as the chemistry of biomass conversion and utilization.
JWCT primarily publishes original research papers and communications, and occasionally invited review articles and special issues. Special issues must summarize and analyze state-of-the-art developments within the field of biomass chemistry, or be in tribute to the career of a distinguished researcher. If you wish to suggest a special issue for the Journal, please email the Editor-in-Chief a detailed proposal that includes the topic, a list of potential contributors, and a time-line.