N. Pokryshkin, V. G. Yakunin, A. Efimova, A.A. Elyseev, D. Presnov, V. Savinov, V. Timoshenko
{"title":"冷气压等离子体射流对硅纳米结构的改性","authors":"N. Pokryshkin, V. G. Yakunin, A. Efimova, A.A. Elyseev, D. Presnov, V. Savinov, V. Timoshenko","doi":"10.18321/ectj1497","DOIUrl":null,"url":null,"abstract":"Cold atmospheric plasma (CAP) jets with helium (He) and argon (Ar) plasma-forming gases were used to modify the structure, photoluminescence (PL), and electrical properties of arrays of silicon nanowires (SiNWs) with initial cross-section sizes of the order of 100 nm and length of about 7‒8 microns. The CAP source consisted of a 30 kHz voltage generator with a full power up to 5 W and the CAP treatment for 1‒5 min resulted in spattering of SiNWs’ tips followed by redeposition of silicon atoms. An increase of the silicon oxide phase and a decrease of the PL intensity were observed in the plasma processed SiNW arrays. A decrease of the free hole concentration and an increase in the free electron density were revealed in heavily boron and phosphorous doped SiNWs, respectively, as it was monitored by means of the Raman spectroscopy, considering a coupling of the light scattering by phonon and free charge carriers (Fano effect) in SiNWs. The obtained results demonstrate that the CAP treatment can be used to change the length, sharpness, luminescence intensity, and electrical properties of silicon nanowires for possible applications in optoelectronics and sensorics.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification of Silicon Nanostructures by Cold Atmospheric Pressure Plasma Jets\",\"authors\":\"N. Pokryshkin, V. G. Yakunin, A. Efimova, A.A. Elyseev, D. Presnov, V. Savinov, V. Timoshenko\",\"doi\":\"10.18321/ectj1497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cold atmospheric plasma (CAP) jets with helium (He) and argon (Ar) plasma-forming gases were used to modify the structure, photoluminescence (PL), and electrical properties of arrays of silicon nanowires (SiNWs) with initial cross-section sizes of the order of 100 nm and length of about 7‒8 microns. The CAP source consisted of a 30 kHz voltage generator with a full power up to 5 W and the CAP treatment for 1‒5 min resulted in spattering of SiNWs’ tips followed by redeposition of silicon atoms. An increase of the silicon oxide phase and a decrease of the PL intensity were observed in the plasma processed SiNW arrays. A decrease of the free hole concentration and an increase in the free electron density were revealed in heavily boron and phosphorous doped SiNWs, respectively, as it was monitored by means of the Raman spectroscopy, considering a coupling of the light scattering by phonon and free charge carriers (Fano effect) in SiNWs. The obtained results demonstrate that the CAP treatment can be used to change the length, sharpness, luminescence intensity, and electrical properties of silicon nanowires for possible applications in optoelectronics and sensorics.\",\"PeriodicalId\":11795,\"journal\":{\"name\":\"Eurasian Chemico-Technological Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Chemico-Technological Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18321/ectj1497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modification of Silicon Nanostructures by Cold Atmospheric Pressure Plasma Jets
Cold atmospheric plasma (CAP) jets with helium (He) and argon (Ar) plasma-forming gases were used to modify the structure, photoluminescence (PL), and electrical properties of arrays of silicon nanowires (SiNWs) with initial cross-section sizes of the order of 100 nm and length of about 7‒8 microns. The CAP source consisted of a 30 kHz voltage generator with a full power up to 5 W and the CAP treatment for 1‒5 min resulted in spattering of SiNWs’ tips followed by redeposition of silicon atoms. An increase of the silicon oxide phase and a decrease of the PL intensity were observed in the plasma processed SiNW arrays. A decrease of the free hole concentration and an increase in the free electron density were revealed in heavily boron and phosphorous doped SiNWs, respectively, as it was monitored by means of the Raman spectroscopy, considering a coupling of the light scattering by phonon and free charge carriers (Fano effect) in SiNWs. The obtained results demonstrate that the CAP treatment can be used to change the length, sharpness, luminescence intensity, and electrical properties of silicon nanowires for possible applications in optoelectronics and sensorics.
期刊介绍:
The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.