{"title":"成像椭圆偏振和白光干涉显微镜在4H-SiC外延层缺陷检测中的应用","authors":"Elena Ermilova","doi":"10.1051/jeos/2023018","DOIUrl":null,"url":null,"abstract":"Critical defects, also known as device killers, in wide bandgap semiconductors significantly affect the performance of power electronic devices. We used the methods imaging ellipsometry (IE) and white light interference microscopy (WLIM) in a hybrid optical metrology study for fast and non-destructive detection, classification, and characterisation of defects in 4H-SiC homoepitaxial layers on 4H-SiC substrates. Ellipsometry measurement results are confirmed by WLIM. They can be successfully applied for wafer characterisation already during production of SiC epilayers and for subsequent industrial quality control.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of imaging ellipsometry and white light interference microscopy for detection of defects in epitaxially grown 4H-SiC layers\",\"authors\":\"Elena Ermilova\",\"doi\":\"10.1051/jeos/2023018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Critical defects, also known as device killers, in wide bandgap semiconductors significantly affect the performance of power electronic devices. We used the methods imaging ellipsometry (IE) and white light interference microscopy (WLIM) in a hybrid optical metrology study for fast and non-destructive detection, classification, and characterisation of defects in 4H-SiC homoepitaxial layers on 4H-SiC substrates. Ellipsometry measurement results are confirmed by WLIM. They can be successfully applied for wafer characterisation already during production of SiC epilayers and for subsequent industrial quality control.\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1051/jeos/2023018\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2023018","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Application of imaging ellipsometry and white light interference microscopy for detection of defects in epitaxially grown 4H-SiC layers
Critical defects, also known as device killers, in wide bandgap semiconductors significantly affect the performance of power electronic devices. We used the methods imaging ellipsometry (IE) and white light interference microscopy (WLIM) in a hybrid optical metrology study for fast and non-destructive detection, classification, and characterisation of defects in 4H-SiC homoepitaxial layers on 4H-SiC substrates. Ellipsometry measurement results are confirmed by WLIM. They can be successfully applied for wafer characterisation already during production of SiC epilayers and for subsequent industrial quality control.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.