环保壳聚糖基生物柴油多相催化剂载体膜

R. A. Lusiana, R. Nuryanto, N. Prasetya, Resa Putri Sherina, D. Dayanti
{"title":"环保壳聚糖基生物柴油多相催化剂载体膜","authors":"R. A. Lusiana, R. Nuryanto, N. Prasetya, Resa Putri Sherina, D. Dayanti","doi":"10.14710/jksa.26.2.39-49","DOIUrl":null,"url":null,"abstract":"A chitosan-polyvinyl pyrrolidone K-30 (Cs-PVP.K30) membrane was prepared as a heterogeneous catalyst supporting membrane in the transesterification process in the production of biodiesel from palm oil and methanol through the blend reaction between chitosan (Cs) and polyvinyl pyrrolidone K-30 polymer (PVP K-30). Several membranes were characterized by their physicochemical and catalytic properties. Based on physicochemical data, it was found that including the carbonyl group from PVP K-30 into the chitosan framework correlated with an increase in porosity, hydrophilicity, water absorption, and the degree of swelling of the membrane. The results of the analysis using Fourier Transmittance Infra-red (FTIR) showed the spectra of carbonyl (-C=O) and hydroxyl (-OH) groups at wavenumbers 1648 cm-1 and 3363 cm-1, which shows that the reaction of chitosan alloy with PVP K-30 has been successfully carried out. The catalytic site of the Cs-PVP K30-NaOH membrane in the biodiesel production process was studied under several conversion conditions. It was found that the conversion of biodiesel reached 93.90% with a reaction time of 90 minutes, a temperature of 65°C, and an oil/methanol mole ratio of 1:7.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-Friendly Chitosan-Based Biodiesel Heterogeneous Catalyst Support Membrane\",\"authors\":\"R. A. Lusiana, R. Nuryanto, N. Prasetya, Resa Putri Sherina, D. Dayanti\",\"doi\":\"10.14710/jksa.26.2.39-49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A chitosan-polyvinyl pyrrolidone K-30 (Cs-PVP.K30) membrane was prepared as a heterogeneous catalyst supporting membrane in the transesterification process in the production of biodiesel from palm oil and methanol through the blend reaction between chitosan (Cs) and polyvinyl pyrrolidone K-30 polymer (PVP K-30). Several membranes were characterized by their physicochemical and catalytic properties. Based on physicochemical data, it was found that including the carbonyl group from PVP K-30 into the chitosan framework correlated with an increase in porosity, hydrophilicity, water absorption, and the degree of swelling of the membrane. The results of the analysis using Fourier Transmittance Infra-red (FTIR) showed the spectra of carbonyl (-C=O) and hydroxyl (-OH) groups at wavenumbers 1648 cm-1 and 3363 cm-1, which shows that the reaction of chitosan alloy with PVP K-30 has been successfully carried out. The catalytic site of the Cs-PVP K30-NaOH membrane in the biodiesel production process was studied under several conversion conditions. It was found that the conversion of biodiesel reached 93.90% with a reaction time of 90 minutes, a temperature of 65°C, and an oil/methanol mole ratio of 1:7.\",\"PeriodicalId\":17811,\"journal\":{\"name\":\"Jurnal Kimia Sains dan Aplikasi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Kimia Sains dan Aplikasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jksa.26.2.39-49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kimia Sains dan Aplikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jksa.26.2.39-49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过壳聚糖(Cs)与聚乙烯醇吡咯烷酮K-30聚合物(PVP K-30)共混反应,制备了壳聚糖-聚乙烯醇吡咯烷酮K-30 (Cs-PVP. k30)膜,作为棕榈油和甲醇酯交换生产生物柴油过程中的多相催化剂载体膜。对几种膜的理化性质和催化性能进行了表征。理化数据表明,将PVP K-30中的羰基加入壳聚糖骨架中,壳聚糖的孔隙度、亲水性、吸水性和溶胀度均有所提高。傅里叶透射红外(FTIR)分析结果显示,在1648 cm-1和3363 cm-1波数处羰基(-C=O)和羟基(-OH)基团的光谱,表明壳聚糖合金与PVP K-30的反应已经成功进行。在几种转化条件下,研究了Cs-PVP K30-NaOH膜在生物柴油生产过程中的催化位点。结果表明,当反应时间为90分钟,反应温度为65℃,油/甲醇摩尔比为1:7时,生物柴油的转化率可达93.90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Eco-Friendly Chitosan-Based Biodiesel Heterogeneous Catalyst Support Membrane
A chitosan-polyvinyl pyrrolidone K-30 (Cs-PVP.K30) membrane was prepared as a heterogeneous catalyst supporting membrane in the transesterification process in the production of biodiesel from palm oil and methanol through the blend reaction between chitosan (Cs) and polyvinyl pyrrolidone K-30 polymer (PVP K-30). Several membranes were characterized by their physicochemical and catalytic properties. Based on physicochemical data, it was found that including the carbonyl group from PVP K-30 into the chitosan framework correlated with an increase in porosity, hydrophilicity, water absorption, and the degree of swelling of the membrane. The results of the analysis using Fourier Transmittance Infra-red (FTIR) showed the spectra of carbonyl (-C=O) and hydroxyl (-OH) groups at wavenumbers 1648 cm-1 and 3363 cm-1, which shows that the reaction of chitosan alloy with PVP K-30 has been successfully carried out. The catalytic site of the Cs-PVP K30-NaOH membrane in the biodiesel production process was studied under several conversion conditions. It was found that the conversion of biodiesel reached 93.90% with a reaction time of 90 minutes, a temperature of 65°C, and an oil/methanol mole ratio of 1:7.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
36
审稿时长
17 weeks
期刊最新文献
Production of Biodiesel from Candlenut Seed Oil (Aleurites Moluccana Wild) Using a NaOH/CaO/Ca Catalyst with Microwave Heating Synthesis of Molecularly Imprinted Polymers with Magnetite Cores for Ibuprofen Adsorption Impact of Fermentation on Hyptolide and Phytochemical Composition of Hyptis pectinata (L.) Poit Effects of Temperature, Molecular Weight, and Non-Solvent Variation on the Physical Properties of PVDF Membranes Prepared through Immersion Precipitation Isolation of Phenolic Acids from Land Kale (Ipomoea reptans Poir) and Antioxidant Activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1