基于多路可见性图基序的卷积神经网络用于EEG信号的睡眠阶段表征

Qing Cai, Jianpeng An, Z. Gao
{"title":"基于多路可见性图基序的卷积神经网络用于EEG信号的睡眠阶段表征","authors":"Qing Cai, Jianpeng An, Z. Gao","doi":"10.26599/BSA.2020.9050016","DOIUrl":null,"url":null,"abstract":"Sleep is an essential integrant in everyone’s daily life; therefore, it is an important but challenging problem to characterize sleep stages from electroencephalogram (EEG) signals. The network motif has been developed as a useful tool to investigate complex networks. In this study, we developed a multiplex visibility graph motif‐based convolutional neural network (CNN) for characterizing sleep stages using EEG signals and then introduced the multiplex motif entropy as the quantitative index to distinguish the six sleep stages. The independent samples t‐test shows that the multiplex motif entropy values have significant differences among the six sleep stages. Furthermore, we developed a CNN model and employed the multiplex motif sequence as the input of the model to classify the six sleep stages. Notably, the classification accuracy of the six‐state stage detection was 85.27%. Results demonstrated the effectiveness of the multiplex motif in characterizing the dynamic features underlying different sleep stages, whereby they further provide an essential strategy for future sleep‐stage detection research.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A multiplex visibility graph motif‐based convolutional neural network for characterizing sleep stages using EEG signals\",\"authors\":\"Qing Cai, Jianpeng An, Z. Gao\",\"doi\":\"10.26599/BSA.2020.9050016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sleep is an essential integrant in everyone’s daily life; therefore, it is an important but challenging problem to characterize sleep stages from electroencephalogram (EEG) signals. The network motif has been developed as a useful tool to investigate complex networks. In this study, we developed a multiplex visibility graph motif‐based convolutional neural network (CNN) for characterizing sleep stages using EEG signals and then introduced the multiplex motif entropy as the quantitative index to distinguish the six sleep stages. The independent samples t‐test shows that the multiplex motif entropy values have significant differences among the six sleep stages. Furthermore, we developed a CNN model and employed the multiplex motif sequence as the input of the model to classify the six sleep stages. Notably, the classification accuracy of the six‐state stage detection was 85.27%. Results demonstrated the effectiveness of the multiplex motif in characterizing the dynamic features underlying different sleep stages, whereby they further provide an essential strategy for future sleep‐stage detection research.\",\"PeriodicalId\":67062,\"journal\":{\"name\":\"Brain Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Science Advances\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.26599/BSA.2020.9050016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Science Advances","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26599/BSA.2020.9050016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

睡眠是每个人日常生活中必不可少的一部分;因此,从脑电图信号中表征睡眠阶段是一个重要但具有挑战性的问题。网络基序已成为研究复杂网络的一个有用工具。在这项研究中,我们开发了一种基于多重可见图基序的卷积神经网络(CNN),用于利用脑电图信号表征睡眠阶段,然后引入多重基序熵作为定量指标来区分六个睡眠阶段。独立样本t检验表明,6个睡眠阶段的多重基序熵值存在显著差异。在此基础上,我们建立了一个CNN模型,并将多重基序序列作为模型的输入,对6个睡眠阶段进行分类。值得注意的是,六状态阶段检测的分类准确率为85.27%。结果证明了多重基序在描述不同睡眠阶段的动态特征方面的有效性,从而为未来的睡眠阶段检测研究提供了必要的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multiplex visibility graph motif‐based convolutional neural network for characterizing sleep stages using EEG signals
Sleep is an essential integrant in everyone’s daily life; therefore, it is an important but challenging problem to characterize sleep stages from electroencephalogram (EEG) signals. The network motif has been developed as a useful tool to investigate complex networks. In this study, we developed a multiplex visibility graph motif‐based convolutional neural network (CNN) for characterizing sleep stages using EEG signals and then introduced the multiplex motif entropy as the quantitative index to distinguish the six sleep stages. The independent samples t‐test shows that the multiplex motif entropy values have significant differences among the six sleep stages. Furthermore, we developed a CNN model and employed the multiplex motif sequence as the input of the model to classify the six sleep stages. Notably, the classification accuracy of the six‐state stage detection was 85.27%. Results demonstrated the effectiveness of the multiplex motif in characterizing the dynamic features underlying different sleep stages, whereby they further provide an essential strategy for future sleep‐stage detection research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
27
审稿时长
10 weeks
期刊最新文献
A review of deep learning methods for cross-subject rapid serial visual presentation detection in World Robot Contest 2022 Overview of recognition methods for SSVEP-based BCIs in World Robot Contest 2022: MATLAB undergraduate group Algorithm contest of motor imagery BCI in the World Robot Contest 2022: A survey Winning algorithms in BCI Controlled Robot Contest in World Robot Contest 2022: BCI Turing Test Overview of the winning approaches in 2022 World Robot Contest Championship–Asynchronous SSVEP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1