真空光电检测技术在超分辨系统中的应用

Gu Kai, Xuefeng Liu, Yang Zhang, Hanwen Zhao, Weiping Liu
{"title":"真空光电检测技术在超分辨系统中的应用","authors":"Gu Kai, Xuefeng Liu, Yang Zhang, Hanwen Zhao, Weiping Liu","doi":"10.4236/opj.2020.106015","DOIUrl":null,"url":null,"abstract":"Due to the wave characteristics of light, diffraction occurs when the light passes through the optical system, so that the resolution of the ordinary far-field optical system is limited by the size of the Airy disk diameter. There are various factors that cause image quality degradation during system detection and imaging, such as optical system aberrations, atmospheric inter-ference, defocusing, system noise and so on. Super-resolution optical imaging technology is the most innovative breakthrough in the optical imaging and detection field in this century. It goes beyond the resolution limit of ordinary optical systems or detectors, and can get more details and information of the structure, providing unprecedented tools for various fields. Compared with ordinary optical systems, super-resolution systems have very high requirements on the signals to be detected, which cannot be met by ordinary detection techniques. Vacuum photoelectric detection and imaging technology is equipped with the characteristics of high sensitivity and fast response. It is widely used in super-resolution systems and has played a great role in super-resolution systems. In this paper, the principles and structure of the image-converter streak camera super-resolution system, scanning electron microscopy super-resolution system and laser scanning confocal super-resolution system will be sorted out separately, and the essential role of the vacuum photoelectric detection technology in the ultra-microscopic sys-tem will be analyzed.","PeriodicalId":64491,"journal":{"name":"光学与光子学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Vacuum Photoelectric Detection Technology in Super-Resolution System\",\"authors\":\"Gu Kai, Xuefeng Liu, Yang Zhang, Hanwen Zhao, Weiping Liu\",\"doi\":\"10.4236/opj.2020.106015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the wave characteristics of light, diffraction occurs when the light passes through the optical system, so that the resolution of the ordinary far-field optical system is limited by the size of the Airy disk diameter. There are various factors that cause image quality degradation during system detection and imaging, such as optical system aberrations, atmospheric inter-ference, defocusing, system noise and so on. Super-resolution optical imaging technology is the most innovative breakthrough in the optical imaging and detection field in this century. It goes beyond the resolution limit of ordinary optical systems or detectors, and can get more details and information of the structure, providing unprecedented tools for various fields. Compared with ordinary optical systems, super-resolution systems have very high requirements on the signals to be detected, which cannot be met by ordinary detection techniques. Vacuum photoelectric detection and imaging technology is equipped with the characteristics of high sensitivity and fast response. It is widely used in super-resolution systems and has played a great role in super-resolution systems. In this paper, the principles and structure of the image-converter streak camera super-resolution system, scanning electron microscopy super-resolution system and laser scanning confocal super-resolution system will be sorted out separately, and the essential role of the vacuum photoelectric detection technology in the ultra-microscopic sys-tem will be analyzed.\",\"PeriodicalId\":64491,\"journal\":{\"name\":\"光学与光子学期刊(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光学与光子学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/opj.2020.106015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光学与光子学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/opj.2020.106015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于光的波动特性,当光穿过光学系统时会发生衍射,因此普通远场光学系统的分辨率受到艾里盘直径大小的限制。在系统检测和成像过程中,导致图像质量下降的因素多种多样,如光学系统像差、大气互差、散焦、系统噪声等。超分辨率光学成像技术是本世纪光学成像和检测领域最具创新性的突破。它超越了普通光学系统或探测器的分辨率限制,可以获得更多的结构细节和信息,为各个领域提供了前所未有的工具。与普通光学系统相比,超分辨率系统对待检测信号的要求非常高,这是普通检测技术无法满足的。真空光电检测成像技术具有灵敏度高、响应快的特点。它被广泛应用于超分辨率系统,并在超分辨率系统中发挥了重要作用。本文将分别对图像转换条纹相机超分辨率系统、扫描电子显微镜超分辨率系统和激光扫描共焦超分辨率系统的原理和结构进行梳理,并分析真空光电检测技术在超显微系统中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Vacuum Photoelectric Detection Technology in Super-Resolution System
Due to the wave characteristics of light, diffraction occurs when the light passes through the optical system, so that the resolution of the ordinary far-field optical system is limited by the size of the Airy disk diameter. There are various factors that cause image quality degradation during system detection and imaging, such as optical system aberrations, atmospheric inter-ference, defocusing, system noise and so on. Super-resolution optical imaging technology is the most innovative breakthrough in the optical imaging and detection field in this century. It goes beyond the resolution limit of ordinary optical systems or detectors, and can get more details and information of the structure, providing unprecedented tools for various fields. Compared with ordinary optical systems, super-resolution systems have very high requirements on the signals to be detected, which cannot be met by ordinary detection techniques. Vacuum photoelectric detection and imaging technology is equipped with the characteristics of high sensitivity and fast response. It is widely used in super-resolution systems and has played a great role in super-resolution systems. In this paper, the principles and structure of the image-converter streak camera super-resolution system, scanning electron microscopy super-resolution system and laser scanning confocal super-resolution system will be sorted out separately, and the essential role of the vacuum photoelectric detection technology in the ultra-microscopic sys-tem will be analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
431
期刊最新文献
Analysis and Prediction of Effect of Turning Marks Diffraction on Image Quality of Optical System Numerical Simulation of External-Cavity Distributed Feedback Semiconductor Laser The Influence of Energy Transfer on the Color Temperature Change in Color-Tunable Organic Light Emitting Diodes with Interface Exciplex A High Spectral Efficient Frequency-Domain Channel-Estimation Method for the Polarization-Division-Multiplexed CO-OFDM-OQAM System The Study on the Relationship between Dynamic Balance Energy Distribution and Spectral Stability with Voltage Change in White Organic Light Emitting Diode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1