H. Mohamed, E. El-wakil, E. Abdel-hameed, M. El-hashash, Mohamed A Shemis
{"title":"臭椿单叶总酚、总黄酮、抗氧化和细胞毒潜能的评价","authors":"H. Mohamed, E. El-wakil, E. Abdel-hameed, M. El-hashash, Mohamed A Shemis","doi":"10.4103/jrptps.JRPTPS_7_21","DOIUrl":null,"url":null,"abstract":"Context: People all over the world are suffering from cancer. Liver cancer is considered the second most common malignancy among Egyptian men and the sixth most common malignancy among Egyptian women. Plant-derived antioxidants are believed to prevent or delay the occurrence of many chronic diseases such as cancer. Ailanthus altissima has been used in many traditional prescriptions. Aims: The current study aimed at investigating the phytochemical profile of A. altissima leaves’ extract and its derived fractions, determining their content of phenolics and flavonoids as well as assessing their antioxidant and cytotoxic potential. Materials and Methods: The phytochemical screening was carried out using standard methods. The total phenolic, flavonoid, and flavonol contents were determined using Folin-Ciocalteu, aluminum chloride, and aluminum chloride/ sodium acetate assays, respectively. The antioxidant activity was evaluated using different in vitro methods: DPPH•, total antioxidant capacity, hydroxyl (•OH), nitric oxide (NO•) radical scavenging activities, and permanganate-reducing antioxidant capacity (PRAC). The antiproliferative potential against HepG2 cells was evaluated using sulforhodamine-B assay (SRB). Results: The results showed that the ethyl acetate fraction had the highest content of phenolics, flavonoids, and flavonols (551.72 ± 1.81 mg GAE/g ext., 371.24 ± 4.36 mg RE/g ext., and 100.47 ± 1.30 mg QE/g ext., respectively). It also had the most potent reducing power (DPPH• SC50 = 7.19 ± 0.05 µg/mL, TAC= 369.88 ± 1.51 mg AAE/g ext., •OH SA = 95.46 ± 0.14%, NO• SA = 40.65 ± 0.91%, and PRAC = 77.19 ± 0.27%). The n-butanol fraction exhibited the most potent cytotoxic potential against HepG2 cells (IC50 = 16.70 µg/mL). Conclusion: A. altissima leaves could be considered potent antioxidant and cytotoxic alternatives.","PeriodicalId":16966,"journal":{"name":"Journal of Reports in Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Evaluation of total phenolics, flavonoids, and antioxidant and cytotoxic potential of Ailanthus altissima (Mill.) swingle leaves\",\"authors\":\"H. Mohamed, E. El-wakil, E. Abdel-hameed, M. El-hashash, Mohamed A Shemis\",\"doi\":\"10.4103/jrptps.JRPTPS_7_21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context: People all over the world are suffering from cancer. Liver cancer is considered the second most common malignancy among Egyptian men and the sixth most common malignancy among Egyptian women. Plant-derived antioxidants are believed to prevent or delay the occurrence of many chronic diseases such as cancer. Ailanthus altissima has been used in many traditional prescriptions. Aims: The current study aimed at investigating the phytochemical profile of A. altissima leaves’ extract and its derived fractions, determining their content of phenolics and flavonoids as well as assessing their antioxidant and cytotoxic potential. Materials and Methods: The phytochemical screening was carried out using standard methods. The total phenolic, flavonoid, and flavonol contents were determined using Folin-Ciocalteu, aluminum chloride, and aluminum chloride/ sodium acetate assays, respectively. The antioxidant activity was evaluated using different in vitro methods: DPPH•, total antioxidant capacity, hydroxyl (•OH), nitric oxide (NO•) radical scavenging activities, and permanganate-reducing antioxidant capacity (PRAC). The antiproliferative potential against HepG2 cells was evaluated using sulforhodamine-B assay (SRB). Results: The results showed that the ethyl acetate fraction had the highest content of phenolics, flavonoids, and flavonols (551.72 ± 1.81 mg GAE/g ext., 371.24 ± 4.36 mg RE/g ext., and 100.47 ± 1.30 mg QE/g ext., respectively). It also had the most potent reducing power (DPPH• SC50 = 7.19 ± 0.05 µg/mL, TAC= 369.88 ± 1.51 mg AAE/g ext., •OH SA = 95.46 ± 0.14%, NO• SA = 40.65 ± 0.91%, and PRAC = 77.19 ± 0.27%). The n-butanol fraction exhibited the most potent cytotoxic potential against HepG2 cells (IC50 = 16.70 µg/mL). Conclusion: A. altissima leaves could be considered potent antioxidant and cytotoxic alternatives.\",\"PeriodicalId\":16966,\"journal\":{\"name\":\"Journal of Reports in Pharmaceutical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reports in Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jrptps.JRPTPS_7_21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reports in Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jrptps.JRPTPS_7_21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Evaluation of total phenolics, flavonoids, and antioxidant and cytotoxic potential of Ailanthus altissima (Mill.) swingle leaves
Context: People all over the world are suffering from cancer. Liver cancer is considered the second most common malignancy among Egyptian men and the sixth most common malignancy among Egyptian women. Plant-derived antioxidants are believed to prevent or delay the occurrence of many chronic diseases such as cancer. Ailanthus altissima has been used in many traditional prescriptions. Aims: The current study aimed at investigating the phytochemical profile of A. altissima leaves’ extract and its derived fractions, determining their content of phenolics and flavonoids as well as assessing their antioxidant and cytotoxic potential. Materials and Methods: The phytochemical screening was carried out using standard methods. The total phenolic, flavonoid, and flavonol contents were determined using Folin-Ciocalteu, aluminum chloride, and aluminum chloride/ sodium acetate assays, respectively. The antioxidant activity was evaluated using different in vitro methods: DPPH•, total antioxidant capacity, hydroxyl (•OH), nitric oxide (NO•) radical scavenging activities, and permanganate-reducing antioxidant capacity (PRAC). The antiproliferative potential against HepG2 cells was evaluated using sulforhodamine-B assay (SRB). Results: The results showed that the ethyl acetate fraction had the highest content of phenolics, flavonoids, and flavonols (551.72 ± 1.81 mg GAE/g ext., 371.24 ± 4.36 mg RE/g ext., and 100.47 ± 1.30 mg QE/g ext., respectively). It also had the most potent reducing power (DPPH• SC50 = 7.19 ± 0.05 µg/mL, TAC= 369.88 ± 1.51 mg AAE/g ext., •OH SA = 95.46 ± 0.14%, NO• SA = 40.65 ± 0.91%, and PRAC = 77.19 ± 0.27%). The n-butanol fraction exhibited the most potent cytotoxic potential against HepG2 cells (IC50 = 16.70 µg/mL). Conclusion: A. altissima leaves could be considered potent antioxidant and cytotoxic alternatives.
期刊介绍:
The Journal of Reports in Pharmaceutical Sciences(JRPS) is a biannually peer-reviewed multi-disciplinary pharmaceutical publication to serve as a means for scientific information exchange in the international pharmaceutical forum. It accepts novel findings that contribute to advancement of scientific knowledge in pharmaceutical fields that not published or under consideration for publication anywhere else for publication in JRPS as original research article. all aspects of pharmaceutical sciences consist of medicinal chemistry, molecular modeling, drug design, pharmaceutics, biopharmacy, pharmaceutical nanotechnology, pharmacognosy, natural products, pharmaceutical biotechnology, pharmacology, toxicology and clinical pharmacy.