W. Villegas-Ch., J. Garcia-Ortiz, Ángel Jaramillo-Alcázar
{"title":"基于递归神经网络和交互式可视化的人工智能系统可解释性改进方法","authors":"W. Villegas-Ch., J. Garcia-Ortiz, Ángel Jaramillo-Alcázar","doi":"10.3390/bdcc7030136","DOIUrl":null,"url":null,"abstract":"This paper investigated the importance of explainability in artificial intelligence models and its application in the context of prediction in Formula (1). A step-by-step analysis was carried out, including collecting and preparing data from previous races, training an AI model to make predictions, and applying explainability techniques in the said model. Two approaches were used: the attention technique, which allowed visualizing the most relevant parts of the input data using heat maps, and the permutation importance technique, which evaluated the relative importance of features. The results revealed that feature length and qualifying performance are crucial variables for position predictions in Formula (1). These findings highlight the relevance of explainability in AI models, not only in Formula (1) but also in other fields and sectors, by ensuring fairness, transparency, and accountability in AI-based decision making. The results highlight the importance of considering explainability in AI models and provide a practical methodology for its implementation in Formula (1) and other domains.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Approach Based on Recurrent Neural Networks and Interactive Visualization to Improve Explainability in AI Systems\",\"authors\":\"W. Villegas-Ch., J. Garcia-Ortiz, Ángel Jaramillo-Alcázar\",\"doi\":\"10.3390/bdcc7030136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigated the importance of explainability in artificial intelligence models and its application in the context of prediction in Formula (1). A step-by-step analysis was carried out, including collecting and preparing data from previous races, training an AI model to make predictions, and applying explainability techniques in the said model. Two approaches were used: the attention technique, which allowed visualizing the most relevant parts of the input data using heat maps, and the permutation importance technique, which evaluated the relative importance of features. The results revealed that feature length and qualifying performance are crucial variables for position predictions in Formula (1). These findings highlight the relevance of explainability in AI models, not only in Formula (1) but also in other fields and sectors, by ensuring fairness, transparency, and accountability in AI-based decision making. The results highlight the importance of considering explainability in AI models and provide a practical methodology for its implementation in Formula (1) and other domains.\",\"PeriodicalId\":36397,\"journal\":{\"name\":\"Big Data and Cognitive Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/bdcc7030136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc7030136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An Approach Based on Recurrent Neural Networks and Interactive Visualization to Improve Explainability in AI Systems
This paper investigated the importance of explainability in artificial intelligence models and its application in the context of prediction in Formula (1). A step-by-step analysis was carried out, including collecting and preparing data from previous races, training an AI model to make predictions, and applying explainability techniques in the said model. Two approaches were used: the attention technique, which allowed visualizing the most relevant parts of the input data using heat maps, and the permutation importance technique, which evaluated the relative importance of features. The results revealed that feature length and qualifying performance are crucial variables for position predictions in Formula (1). These findings highlight the relevance of explainability in AI models, not only in Formula (1) but also in other fields and sectors, by ensuring fairness, transparency, and accountability in AI-based decision making. The results highlight the importance of considering explainability in AI models and provide a practical methodology for its implementation in Formula (1) and other domains.