冲击载荷作用下端锚锚杆动力性能的数值研究

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL Latin American Journal of Solids and Structures Pub Date : 2021-03-02 DOI:10.1590/1679-78256458
Chen Zhao, Yubao Zhang, Wenbin Wu, Zijian Zhang, T. Zhao
{"title":"冲击载荷作用下端锚锚杆动力性能的数值研究","authors":"Chen Zhao, Yubao Zhang, Wenbin Wu, Zijian Zhang, T. Zhao","doi":"10.1590/1679-78256458","DOIUrl":null,"url":null,"abstract":"Abstract The numerical modelling for dynamic impact testing of end-anchored rockbolt is established in this paper. The dynamic response of rockbolt under impact loading condition is investigated considering the effects of different impact energy levels, anchoring length, bolt diameter, and material type. The results show that the stress characteristics of the anchoring section in end-anchored rockbolt could be divided into three stages with the impact time: impact initial stage, impact middle stage and impact final stage. The elongation of the rockbolt increases by about 30 mm for every 5kJ increase in impact energy. When the impact energy level increases, the energy absorption rate and maximum plastic strain both increase significantly. The impact energy is mainly dissipated by the plastic deformation of the free section and debonding section of end-anchored rockbolt. The free section plays a buffer role through its elastic deformation when the rockbolt is subjected to impact loading. It is remarkable that the energy absorption rate and anti-impact performance of the end-anchored rockbolt can be improved by increasing the bolt diameter and the bolt material strength.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Numerical Study on Dynamic Performance of End-anchored Rockbolt under Impact Loading\",\"authors\":\"Chen Zhao, Yubao Zhang, Wenbin Wu, Zijian Zhang, T. Zhao\",\"doi\":\"10.1590/1679-78256458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The numerical modelling for dynamic impact testing of end-anchored rockbolt is established in this paper. The dynamic response of rockbolt under impact loading condition is investigated considering the effects of different impact energy levels, anchoring length, bolt diameter, and material type. The results show that the stress characteristics of the anchoring section in end-anchored rockbolt could be divided into three stages with the impact time: impact initial stage, impact middle stage and impact final stage. The elongation of the rockbolt increases by about 30 mm for every 5kJ increase in impact energy. When the impact energy level increases, the energy absorption rate and maximum plastic strain both increase significantly. The impact energy is mainly dissipated by the plastic deformation of the free section and debonding section of end-anchored rockbolt. The free section plays a buffer role through its elastic deformation when the rockbolt is subjected to impact loading. It is remarkable that the energy absorption rate and anti-impact performance of the end-anchored rockbolt can be improved by increasing the bolt diameter and the bolt material strength.\",\"PeriodicalId\":18192,\"journal\":{\"name\":\"Latin American Journal of Solids and Structures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latin American Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1590/1679-78256458\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1590/1679-78256458","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 3

摘要

摘要建立了端锚锚杆动态冲击试验的数值模型。考虑不同冲击能级、锚杆长度、锚杆直径和锚杆材料类型的影响,研究了冲击载荷条件下锚杆的动力响应。结果表明:端锚锚杆锚固段应力特征随冲击时间可划分为冲击初期、冲击中期和冲击末期三个阶段;冲击能量每增加5kJ,锚杆伸长率增加约30mm。当冲击能级增加时,能量吸收率和最大塑性应变均显著增加。冲击能量主要通过端锚锚杆自由段和脱粘段的塑性变形来耗散。锚杆受冲击载荷时,自由截面通过其弹性变形起到缓冲作用。通过增加锚杆直径和锚杆材料强度,可以显著提高端锚锚杆的吸能率和抗冲击性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Study on Dynamic Performance of End-anchored Rockbolt under Impact Loading
Abstract The numerical modelling for dynamic impact testing of end-anchored rockbolt is established in this paper. The dynamic response of rockbolt under impact loading condition is investigated considering the effects of different impact energy levels, anchoring length, bolt diameter, and material type. The results show that the stress characteristics of the anchoring section in end-anchored rockbolt could be divided into three stages with the impact time: impact initial stage, impact middle stage and impact final stage. The elongation of the rockbolt increases by about 30 mm for every 5kJ increase in impact energy. When the impact energy level increases, the energy absorption rate and maximum plastic strain both increase significantly. The impact energy is mainly dissipated by the plastic deformation of the free section and debonding section of end-anchored rockbolt. The free section plays a buffer role through its elastic deformation when the rockbolt is subjected to impact loading. It is remarkable that the energy absorption rate and anti-impact performance of the end-anchored rockbolt can be improved by increasing the bolt diameter and the bolt material strength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
8.30%
发文量
37
审稿时长
>12 weeks
期刊最新文献
Reliability-based design of reinforced concrete pipes to satisfy the TEBT Innovative Approach for Enhancing GLULAM Performance with Reinforcing Steel Bars: A BESO-based Study Sequential method of topological optimization in multi-component systems Coupling Modal Analysis with the BEM for the Transient Response of Bar Structures Interacting with Three-Dimensional Soil Profiles Experimental and Numerical Study on Ballistic Impact Response of Vehicle Tires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1