机器学习在存储环轨道校正中的应用

Q4 Engineering 强激光与粒子束 Pub Date : 2021-03-05 DOI:10.11884/HPLPB202133.200318
Liu Ruichun, Zhang Qinglei, Mi Qingru, Jiang Bo-Cheng, W. Kun, Liu Changliang, Zhao Zhen-Tang
{"title":"机器学习在存储环轨道校正中的应用","authors":"Liu Ruichun, Zhang Qinglei, Mi Qingru, Jiang Bo-Cheng, W. Kun, Liu Changliang, Zhao Zhen-Tang","doi":"10.11884/HPLPB202133.200318","DOIUrl":null,"url":null,"abstract":"Synchrotron light source is one of the most powerful tools in modern science and technology. Shanghai Synchrotron Radiation Facility (SSRF), located in Shanghai, China, is an advanced 3.5 GeV 3rd-generation medium energy light source. The 3rd-generation synchrotron radiation light source will provide high brilliance and high stability synchrotron radiation to fulfill the advanced experimental conditions in frontier researches. To achieve highly stable radiation, it is important to have highly stable beam orbit. Thus we adopted machine learning method to control and feedback the orbit. Using this neural network-based orbit correction method, which doesn’t rely on the response matrix, we can establish a nonlinear mapping relationship between correctors and the orbit distortions and perform continuous online retraining. This new method can significantly improve the orbit stability of SSRF.","PeriodicalId":39871,"journal":{"name":"强激光与粒子束","volume":"33 1","pages":"034007-1-034007-9"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application of machine learning in orbital correction of storage ring\",\"authors\":\"Liu Ruichun, Zhang Qinglei, Mi Qingru, Jiang Bo-Cheng, W. Kun, Liu Changliang, Zhao Zhen-Tang\",\"doi\":\"10.11884/HPLPB202133.200318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synchrotron light source is one of the most powerful tools in modern science and technology. Shanghai Synchrotron Radiation Facility (SSRF), located in Shanghai, China, is an advanced 3.5 GeV 3rd-generation medium energy light source. The 3rd-generation synchrotron radiation light source will provide high brilliance and high stability synchrotron radiation to fulfill the advanced experimental conditions in frontier researches. To achieve highly stable radiation, it is important to have highly stable beam orbit. Thus we adopted machine learning method to control and feedback the orbit. Using this neural network-based orbit correction method, which doesn’t rely on the response matrix, we can establish a nonlinear mapping relationship between correctors and the orbit distortions and perform continuous online retraining. This new method can significantly improve the orbit stability of SSRF.\",\"PeriodicalId\":39871,\"journal\":{\"name\":\"强激光与粒子束\",\"volume\":\"33 1\",\"pages\":\"034007-1-034007-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"强激光与粒子束\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.11884/HPLPB202133.200318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"强激光与粒子束","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.11884/HPLPB202133.200318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

同步加速器光源是现代科学技术中最强大的工具之一。上海同步辐射装置(SSRF)位于中国上海,是一种先进的3.5GeV第三代中能光源。第三代同步辐射光源将提供高亮度、高稳定性的同步辐射,以满足前沿研究的先进实验条件。为了实现高度稳定的辐射,具有高度稳定的光束轨道是很重要的。因此,我们采用了机器学习的方法来控制和反馈轨道。利用这种不依赖于响应矩阵的基于神经网络的轨道校正方法,我们可以在校正器和轨道畸变之间建立非线性映射关系,并进行连续的在线再训练。这种新方法可以显著提高SSRF的轨道稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of machine learning in orbital correction of storage ring
Synchrotron light source is one of the most powerful tools in modern science and technology. Shanghai Synchrotron Radiation Facility (SSRF), located in Shanghai, China, is an advanced 3.5 GeV 3rd-generation medium energy light source. The 3rd-generation synchrotron radiation light source will provide high brilliance and high stability synchrotron radiation to fulfill the advanced experimental conditions in frontier researches. To achieve highly stable radiation, it is important to have highly stable beam orbit. Thus we adopted machine learning method to control and feedback the orbit. Using this neural network-based orbit correction method, which doesn’t rely on the response matrix, we can establish a nonlinear mapping relationship between correctors and the orbit distortions and perform continuous online retraining. This new method can significantly improve the orbit stability of SSRF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
强激光与粒子束
强激光与粒子束 Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
11289
期刊最新文献
Progress on intra-pulse difference frequency generation in femtosecond laser Fiber-laser-pumped high-power mid-infrared optical parametric oscillator based on MgO:PPLN crystal Machine learning applications in large particle accelerator facilities: review and prospects Experimental study of high yield neutron source based on multi reaction channels Analysis of high-frequency atmospheric windows for terahertz communication between the ground and the satellite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1