医生遵守临床实践指南的分析框架:基于知识的方法

Jaehoon Lee, N. Hulse
{"title":"医生遵守临床实践指南的分析框架:基于知识的方法","authors":"Jaehoon Lee, N. Hulse","doi":"10.2196/11659","DOIUrl":null,"url":null,"abstract":"Background: One of the problems in evaluating clinical practice guidelines (CPGs) is the occurrence of knowledge gaps. These gaps may occur when evaluation logics and definitions in analytics pipelines are translated differently. Objective: The objective of this paper is to develop a systematic method that will fill in the cognitive and computational gaps of CPG knowledge components in analytics pipelines. Methods: We used locally developed CPGs that resulted in care process models (CPMs). We derived adherence definitions from the CPMs, transformed them into computationally executable queries, and deployed them into an enterprise knowledge base that specializes in managing clinical knowledge content. We developed a visual analytics framework, whose data pipelines are connected to queries in the knowledge base, to automate the extraction of data from clinical databases and calculation of evaluation metrics. Results: In this pilot study, we implemented 21 CPMs within the proposed framework, which is connected to an enterprise data warehouse (EDW) as a data source. We built a Web–based dashboard for monitoring and evaluating adherence to the CPMs. The dashboard ran for 18 months during which CPM adherence definitions were updated a number of times. Conclusions: The proposed framework was demonstrated to accommodate complicated knowledge management for CPM adherence evaluation in analytics pipelines using a knowledge base. At the same time, knowledge consistency and computational efficiency were maintained. (JMIR Biomed Eng 2019;4(1):e11659) doi: 10.2196/11659","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Analytics Framework for Physician Adherence to Clinical Practice Guidelines: Knowledge-Based Approach\",\"authors\":\"Jaehoon Lee, N. Hulse\",\"doi\":\"10.2196/11659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: One of the problems in evaluating clinical practice guidelines (CPGs) is the occurrence of knowledge gaps. These gaps may occur when evaluation logics and definitions in analytics pipelines are translated differently. Objective: The objective of this paper is to develop a systematic method that will fill in the cognitive and computational gaps of CPG knowledge components in analytics pipelines. Methods: We used locally developed CPGs that resulted in care process models (CPMs). We derived adherence definitions from the CPMs, transformed them into computationally executable queries, and deployed them into an enterprise knowledge base that specializes in managing clinical knowledge content. We developed a visual analytics framework, whose data pipelines are connected to queries in the knowledge base, to automate the extraction of data from clinical databases and calculation of evaluation metrics. Results: In this pilot study, we implemented 21 CPMs within the proposed framework, which is connected to an enterprise data warehouse (EDW) as a data source. We built a Web–based dashboard for monitoring and evaluating adherence to the CPMs. The dashboard ran for 18 months during which CPM adherence definitions were updated a number of times. Conclusions: The proposed framework was demonstrated to accommodate complicated knowledge management for CPM adherence evaluation in analytics pipelines using a knowledge base. At the same time, knowledge consistency and computational efficiency were maintained. (JMIR Biomed Eng 2019;4(1):e11659) doi: 10.2196/11659\",\"PeriodicalId\":87288,\"journal\":{\"name\":\"JMIR biomedical engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/11659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/11659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:评估临床实践指南(CPG)的问题之一是知识差距的出现。当分析管道中的评估逻辑和定义被不同地翻译时,可能会出现这些差距。目的:本文的目的是开发一种系统的方法,填补分析管道中CPG知识组件的认知和计算空白。方法:我们使用本地开发的CPG,产生护理过程模型(CPM)。我们从CPM中推导出依从性定义,将其转换为可计算执行的查询,并将其部署到专门管理临床知识内容的企业知识库中。我们开发了一个可视化分析框架,其数据管道连接到知识库中的查询,以自动从临床数据库中提取数据和计算评估指标。结果:在这项试点研究中,我们在所提出的框架内实现了21个CPM,该框架连接到作为数据源的企业数据仓库(EDW)。我们建立了一个基于Web的仪表板,用于监测和评估CPM的遵守情况。该仪表盘运行了18个月,在此期间CPM遵守定义被多次更新。结论:所提出的框架已被证明可以在使用知识库的分析管道中适应CPM依从性评估的复杂知识管理。同时,保持了知识的一致性和计算效率。(JMIR Biomed Eng 2019;4(1):e11659)doi:10.196/1659
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Analytics Framework for Physician Adherence to Clinical Practice Guidelines: Knowledge-Based Approach
Background: One of the problems in evaluating clinical practice guidelines (CPGs) is the occurrence of knowledge gaps. These gaps may occur when evaluation logics and definitions in analytics pipelines are translated differently. Objective: The objective of this paper is to develop a systematic method that will fill in the cognitive and computational gaps of CPG knowledge components in analytics pipelines. Methods: We used locally developed CPGs that resulted in care process models (CPMs). We derived adherence definitions from the CPMs, transformed them into computationally executable queries, and deployed them into an enterprise knowledge base that specializes in managing clinical knowledge content. We developed a visual analytics framework, whose data pipelines are connected to queries in the knowledge base, to automate the extraction of data from clinical databases and calculation of evaluation metrics. Results: In this pilot study, we implemented 21 CPMs within the proposed framework, which is connected to an enterprise data warehouse (EDW) as a data source. We built a Web–based dashboard for monitoring and evaluating adherence to the CPMs. The dashboard ran for 18 months during which CPM adherence definitions were updated a number of times. Conclusions: The proposed framework was demonstrated to accommodate complicated knowledge management for CPM adherence evaluation in analytics pipelines using a knowledge base. At the same time, knowledge consistency and computational efficiency were maintained. (JMIR Biomed Eng 2019;4(1):e11659) doi: 10.2196/11659
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
期刊最新文献
Trends in South Korean Medical Device Development for Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder: Narrative Review. Classifying Residual Stroke Severity Using Robotics-Assisted Stroke Rehabilitation: Machine Learning Approach. Assessing the Accuracy of Smartwatch-Based Estimation of Maximum Oxygen Uptake Using the Apple Watch Series 7: Validation Study. Agreement Between Apple Watch and Actical Step Counts in a Community Setting: Cross-Sectional Investigation From the Framingham Heart Study. Stroke Survivors' Interaction With Hand Rehabilitation Devices: Observational Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1