S. Neuhuber, Lukas Plan, S. Gier, E. Hintersberger, J. Lachner, D. Scholz, C. Lüthgens, S. Braumann, Fabian Bodenlenz, K. Voit, M. Fiebig
{"title":"洞穴沉积物的数值年龄定年,以量化上新世和更新世阿尔卑斯-喀尔巴阡山脉过渡时期的垂直运动","authors":"S. Neuhuber, Lukas Plan, S. Gier, E. Hintersberger, J. Lachner, D. Scholz, C. Lüthgens, S. Braumann, Fabian Bodenlenz, K. Voit, M. Fiebig","doi":"10.31577/GEOLCARP.71.6.5","DOIUrl":null,"url":null,"abstract":"The paleoenvironmental and tectonic history at the southwestern end of the Malé Karpaty Mountains was reconstructed using sediment analysis, mineralogy, and dating. Numerical ages using 26Al/10Be burial age dating, 230Th/U ages and luminescence age dating are combined to infer the Pliocene and Pleistocene development of the Hainburg Hills region. This study investigates sediments from two caves separated by a height difference of 92 m as well as aeolian cover sands from a fissure. The cave deposits are very unlike as one is a carbonate precipitate and the other sediment infill, but both preserve information on the uplift/incision at the Alpine-Carpathian border. Emplacement of coarsegrained fluvial deposits from the upper cave was dated to 4.1–4.6 Ma using terrestrial cosmogenic 26Al and 10Be in selected quartz cobbles. Calcite precipitates from the lower cave were 230Th/U dated on three morphologically slightly different cave rafts. Ages calculated from pristine calcite are least prone to alteration and give a time of formation at ~0.31–0.34 Ma. Vertical offset rates calculated from ages and positions above the recent streambed of the Danube vary between 36–42 m/Ma for the higher position and 162 m/Ma at maximum for the lower cave and point to increased uplift/incision that has been described from other areas in the Eastern Alps and the Pannonian Basin System. Deposition of aeolian sand cover was constrained to 13.6 –15.6 ka (pIRIR225 signal) and the presence of sand as opposed to its transport/erosion suggests a change in wind velocities at the Hainburg Gate. This can possibly be correlated to the termination of a cold phase with decreasing continentality accompanied by decreasing atmospheric pressure gradients. Minerals such as hematite and smectite as well as traces of poorly crystallized iron oxides found in the matrix of the upper (older) cave, were formed during warm and humid climate conditions facilitating lateritic soil formation. This is a remnant from the late Miocene or Early Pliocene soil that formed in a subtropical climate.","PeriodicalId":12545,"journal":{"name":"Geologica Carpathica","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Numerical age dating of cave sediments to quantify vertical movement at the Alpine-Carpathian transition in the Plio- and Pleistocene\",\"authors\":\"S. Neuhuber, Lukas Plan, S. Gier, E. Hintersberger, J. Lachner, D. Scholz, C. Lüthgens, S. Braumann, Fabian Bodenlenz, K. Voit, M. Fiebig\",\"doi\":\"10.31577/GEOLCARP.71.6.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paleoenvironmental and tectonic history at the southwestern end of the Malé Karpaty Mountains was reconstructed using sediment analysis, mineralogy, and dating. Numerical ages using 26Al/10Be burial age dating, 230Th/U ages and luminescence age dating are combined to infer the Pliocene and Pleistocene development of the Hainburg Hills region. This study investigates sediments from two caves separated by a height difference of 92 m as well as aeolian cover sands from a fissure. The cave deposits are very unlike as one is a carbonate precipitate and the other sediment infill, but both preserve information on the uplift/incision at the Alpine-Carpathian border. Emplacement of coarsegrained fluvial deposits from the upper cave was dated to 4.1–4.6 Ma using terrestrial cosmogenic 26Al and 10Be in selected quartz cobbles. Calcite precipitates from the lower cave were 230Th/U dated on three morphologically slightly different cave rafts. Ages calculated from pristine calcite are least prone to alteration and give a time of formation at ~0.31–0.34 Ma. Vertical offset rates calculated from ages and positions above the recent streambed of the Danube vary between 36–42 m/Ma for the higher position and 162 m/Ma at maximum for the lower cave and point to increased uplift/incision that has been described from other areas in the Eastern Alps and the Pannonian Basin System. Deposition of aeolian sand cover was constrained to 13.6 –15.6 ka (pIRIR225 signal) and the presence of sand as opposed to its transport/erosion suggests a change in wind velocities at the Hainburg Gate. This can possibly be correlated to the termination of a cold phase with decreasing continentality accompanied by decreasing atmospheric pressure gradients. Minerals such as hematite and smectite as well as traces of poorly crystallized iron oxides found in the matrix of the upper (older) cave, were formed during warm and humid climate conditions facilitating lateritic soil formation. This is a remnant from the late Miocene or Early Pliocene soil that formed in a subtropical climate.\",\"PeriodicalId\":12545,\"journal\":{\"name\":\"Geologica Carpathica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geologica Carpathica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.31577/GEOLCARP.71.6.5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geologica Carpathica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.31577/GEOLCARP.71.6.5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical age dating of cave sediments to quantify vertical movement at the Alpine-Carpathian transition in the Plio- and Pleistocene
The paleoenvironmental and tectonic history at the southwestern end of the Malé Karpaty Mountains was reconstructed using sediment analysis, mineralogy, and dating. Numerical ages using 26Al/10Be burial age dating, 230Th/U ages and luminescence age dating are combined to infer the Pliocene and Pleistocene development of the Hainburg Hills region. This study investigates sediments from two caves separated by a height difference of 92 m as well as aeolian cover sands from a fissure. The cave deposits are very unlike as one is a carbonate precipitate and the other sediment infill, but both preserve information on the uplift/incision at the Alpine-Carpathian border. Emplacement of coarsegrained fluvial deposits from the upper cave was dated to 4.1–4.6 Ma using terrestrial cosmogenic 26Al and 10Be in selected quartz cobbles. Calcite precipitates from the lower cave were 230Th/U dated on three morphologically slightly different cave rafts. Ages calculated from pristine calcite are least prone to alteration and give a time of formation at ~0.31–0.34 Ma. Vertical offset rates calculated from ages and positions above the recent streambed of the Danube vary between 36–42 m/Ma for the higher position and 162 m/Ma at maximum for the lower cave and point to increased uplift/incision that has been described from other areas in the Eastern Alps and the Pannonian Basin System. Deposition of aeolian sand cover was constrained to 13.6 –15.6 ka (pIRIR225 signal) and the presence of sand as opposed to its transport/erosion suggests a change in wind velocities at the Hainburg Gate. This can possibly be correlated to the termination of a cold phase with decreasing continentality accompanied by decreasing atmospheric pressure gradients. Minerals such as hematite and smectite as well as traces of poorly crystallized iron oxides found in the matrix of the upper (older) cave, were formed during warm and humid climate conditions facilitating lateritic soil formation. This is a remnant from the late Miocene or Early Pliocene soil that formed in a subtropical climate.
期刊介绍:
GEOLOGICA CARPATHICA covers a wide spectrum of geological disciplines including geodynamics, tectonics and structural geology, volcanology, stratigraphy, geochronology and isotopic geology, karstology, geochemistry, mineralogy, petrology, lithology and sedimentology, paleogeography, paleoecology, paleobiology and paleontology, paleomagnetism, magnetostratigraphy and other branches of applied geophysics, economic and environmental geology, experimental and theoretical geoscientific studies. Geologica Carpathica , with its 60 year old tradition, presents high-quality research papers devoted to all aspects not only of the Alpine-Carpathian-Balkanian geoscience but also with adjacent regions originated from the Mediterranean Tethys and its continental foreland. Geologica Carpathica is an Official Journal of the Carpathian-Balkan Geological Association.