{"title":"高静压提取冬香叶抗氧化活性及生物活性成分的优化","authors":"S. A. Moreira, M. Pintado, J. Saraiva","doi":"10.1080/08957959.2020.1830079","DOIUrl":null,"url":null,"abstract":"ABSTRACT Winter savory is often used in traditional medicine, having several recognized biological properties. This study aimed to evaluate the effect of high pressure-assisted extraction (HPE) and its optimization by response surface methodology to obtain winter savory extracts with a high content of bioactive compounds and high antioxidant activity (the effect of extraction pressure, extraction time, and ethanol concentration were investigated). Results showed that data could be well fitted to second-order polynomial mathematical models for total phenolics, total flavonoids, chlorophylls, carotenoids, and extraction yield, as well as for antioxidant activity. The models predicted optimal conditions ranging 200–500 MPa, extraction time 1–20 min, and ethanol concentration 0–70% (v,v). In comparison with extraction at atmospheric pressure, HPE showed to be more efficient, allowing obtaining an increase of about 40% for all compounds, and an increase of 29, 48, and 70% for antioxidant activity by FRAP, DPPH and ABTS assays, respectively. GRAPHICAL ABSTRACT","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"40 1","pages":"543 - 560"},"PeriodicalIF":1.2000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08957959.2020.1830079","citationCount":"5","resultStr":"{\"title\":\"Optimization of antioxidant activity and bioactive compounds extraction of winter savory leaves by high hydrostatic pressure\",\"authors\":\"S. A. Moreira, M. Pintado, J. Saraiva\",\"doi\":\"10.1080/08957959.2020.1830079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Winter savory is often used in traditional medicine, having several recognized biological properties. This study aimed to evaluate the effect of high pressure-assisted extraction (HPE) and its optimization by response surface methodology to obtain winter savory extracts with a high content of bioactive compounds and high antioxidant activity (the effect of extraction pressure, extraction time, and ethanol concentration were investigated). Results showed that data could be well fitted to second-order polynomial mathematical models for total phenolics, total flavonoids, chlorophylls, carotenoids, and extraction yield, as well as for antioxidant activity. The models predicted optimal conditions ranging 200–500 MPa, extraction time 1–20 min, and ethanol concentration 0–70% (v,v). In comparison with extraction at atmospheric pressure, HPE showed to be more efficient, allowing obtaining an increase of about 40% for all compounds, and an increase of 29, 48, and 70% for antioxidant activity by FRAP, DPPH and ABTS assays, respectively. GRAPHICAL ABSTRACT\",\"PeriodicalId\":12864,\"journal\":{\"name\":\"High Pressure Research\",\"volume\":\"40 1\",\"pages\":\"543 - 560\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/08957959.2020.1830079\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Pressure Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/08957959.2020.1830079\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Pressure Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/08957959.2020.1830079","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimization of antioxidant activity and bioactive compounds extraction of winter savory leaves by high hydrostatic pressure
ABSTRACT Winter savory is often used in traditional medicine, having several recognized biological properties. This study aimed to evaluate the effect of high pressure-assisted extraction (HPE) and its optimization by response surface methodology to obtain winter savory extracts with a high content of bioactive compounds and high antioxidant activity (the effect of extraction pressure, extraction time, and ethanol concentration were investigated). Results showed that data could be well fitted to second-order polynomial mathematical models for total phenolics, total flavonoids, chlorophylls, carotenoids, and extraction yield, as well as for antioxidant activity. The models predicted optimal conditions ranging 200–500 MPa, extraction time 1–20 min, and ethanol concentration 0–70% (v,v). In comparison with extraction at atmospheric pressure, HPE showed to be more efficient, allowing obtaining an increase of about 40% for all compounds, and an increase of 29, 48, and 70% for antioxidant activity by FRAP, DPPH and ABTS assays, respectively. GRAPHICAL ABSTRACT
期刊介绍:
High Pressure Research is the leading journal for research in high pressure science and technology. The journal publishes original full-length papers and short research reports of new developments, as well as timely review articles. It provides an important forum for the presentation of experimental and theoretical advances in high pressure science in subjects such as:
condensed matter physics and chemistry
geophysics and planetary physics
synthesis of new materials
chemical kinetics under high pressure
industrial applications
shockwaves in condensed matter
instrumentation and techniques
the application of pressure to food / biomaterials
Theoretical papers of exceptionally high quality are also accepted.