冰下水文在南极冰盖动力学和稳定性中的作用:建模视角

IF 2.5 4区 地球科学 Q2 GEOGRAPHY, PHYSICAL Annals of Glaciology Pub Date : 2022-09-01 DOI:10.1017/aog.2023.9
C. Dow
{"title":"冰下水文在南极冰盖动力学和稳定性中的作用:建模视角","authors":"C. Dow","doi":"10.1017/aog.2023.9","DOIUrl":null,"url":null,"abstract":"Abstract Subglacial hydrology is an important component of the ice dynamic system in Antarctica but is challenging to investigate due to the large spatial scales of the catchment systems, the ice thickness, and remote location. Here I discuss key discoveries about Antarctic subglacial hydrology from the Glacier Drainage System (GlaDS) model, including the presence of long, often high-pressure, subglacial channels. These channels pump tens of cubic metres per second of freshwater into ice-shelf cavities and directly affect melt rates at the critical grounding zone regions. Future ice dynamics and ice-shelf cavity models should take subglacial hydrology into account if they are to accurately predict future behaviour of the Antarctic Ice Sheet.","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":"63 1","pages":"49 - 54"},"PeriodicalIF":2.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The role of subglacial hydrology in Antarctic ice sheet dynamics and stability: a modelling perspective\",\"authors\":\"C. Dow\",\"doi\":\"10.1017/aog.2023.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Subglacial hydrology is an important component of the ice dynamic system in Antarctica but is challenging to investigate due to the large spatial scales of the catchment systems, the ice thickness, and remote location. Here I discuss key discoveries about Antarctic subglacial hydrology from the Glacier Drainage System (GlaDS) model, including the presence of long, often high-pressure, subglacial channels. These channels pump tens of cubic metres per second of freshwater into ice-shelf cavities and directly affect melt rates at the critical grounding zone regions. Future ice dynamics and ice-shelf cavity models should take subglacial hydrology into account if they are to accurately predict future behaviour of the Antarctic Ice Sheet.\",\"PeriodicalId\":8211,\"journal\":{\"name\":\"Annals of Glaciology\",\"volume\":\"63 1\",\"pages\":\"49 - 54\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Glaciology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/aog.2023.9\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/aog.2023.9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 4

摘要

摘要冰下水文是南极洲冰动力系统的重要组成部分,但由于汇水系统的空间尺度大、冰厚和位置偏远,研究起来很有挑战性。在这里,我讨论了冰川排水系统(GlaDS)模型中关于南极冰下水文的关键发现,包括长的、通常是高压的冰下通道的存在。这些通道每秒将数十立方米的淡水泵入冰架空腔,并直接影响临界接地带的融化速度。如果要准确预测南极冰盖的未来行为,未来的冰动力学和冰架空洞模型应该考虑冰下水文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of subglacial hydrology in Antarctic ice sheet dynamics and stability: a modelling perspective
Abstract Subglacial hydrology is an important component of the ice dynamic system in Antarctica but is challenging to investigate due to the large spatial scales of the catchment systems, the ice thickness, and remote location. Here I discuss key discoveries about Antarctic subglacial hydrology from the Glacier Drainage System (GlaDS) model, including the presence of long, often high-pressure, subglacial channels. These channels pump tens of cubic metres per second of freshwater into ice-shelf cavities and directly affect melt rates at the critical grounding zone regions. Future ice dynamics and ice-shelf cavity models should take subglacial hydrology into account if they are to accurately predict future behaviour of the Antarctic Ice Sheet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Glaciology
Annals of Glaciology GEOGRAPHY, PHYSICAL-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
8.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annals of Glaciology publishes original scientific articles and letters in selected aspects of glaciology-the study of ice. Each issue of the Annals is thematic, focussing on a specific subject. The Council of the International Glaciological Society welcomes proposals for thematic issues from the glaciological community. Once a theme is approved, the Council appoints an Associate Chief Editor and a team of Scientific Editors to handle the submission, peer review and publication of papers.
期刊最新文献
Dye tracing of upward brine migration in snow MoT-PSA: a two-layer depth-averaged model for simulation of powder snow avalanches on 3-D terrain Resolution enhanced sea ice concentration: a new algorithm applied to AMSR2 microwave radiometry data Particle tracking in snow avalanches with in situ calibrated inertial measurement units Updating glacier inventories on the periphery of Antarctica and Greenland using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1