自激振荡脉冲空化射流喷嘴共振机理及协同优化

IF 0.8 4区 工程技术 Q4 ENGINEERING, MECHANICAL Transactions of The Canadian Society for Mechanical Engineering Pub Date : 2022-10-20 DOI:10.1139/tcsme-2021-0092
Xiaoming Yuan, Ning Wang, Wen Wang, Lijie Zhang, Yong Zhu
{"title":"自激振荡脉冲空化射流喷嘴共振机理及协同优化","authors":"Xiaoming Yuan, Ning Wang, Wen Wang, Lijie Zhang, Yong Zhu","doi":"10.1139/tcsme-2021-0092","DOIUrl":null,"url":null,"abstract":"The peak value and pulsation amplitude of the self-excited oscillating pulse cavitation jet nozzle are essential indices to evaluate the jet performance. We established a simulation model of the jet process of the nozzle to investigate the evolution mechanism of the inner and outer flow fields. We used the chamber fillet, chamber diameter, chamber length, and outlet-tube diameter as the design variables, and the peak value of the striking force and the amplitude of the pulsation of the striking force as the target variables. The collaborative optimization design method of the nozzle was determined by combining the orthogonal test method, the back propagation neural network, and the nondominated sorting genetic algorithm. As indicated by the results, when the inlet pressure was 3 MPa, the factors ranked as follows in terms of their effects on the jet performance of the nozzle: the chamber fillet, the outlet-tube diameter, chamber diameter, and the chamber length. To verify the feasibility of the collaborative optimization method, the nozzle was fabricated via 3D printing, and the simulation model was verified by testing. This study provides support to the development of design theory for self-oscillating pulsed cavitation jet nozzles.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nozzle resonance mechanism and cooperative optimization of self-excited oscillating pulse cavitation jet\",\"authors\":\"Xiaoming Yuan, Ning Wang, Wen Wang, Lijie Zhang, Yong Zhu\",\"doi\":\"10.1139/tcsme-2021-0092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The peak value and pulsation amplitude of the self-excited oscillating pulse cavitation jet nozzle are essential indices to evaluate the jet performance. We established a simulation model of the jet process of the nozzle to investigate the evolution mechanism of the inner and outer flow fields. We used the chamber fillet, chamber diameter, chamber length, and outlet-tube diameter as the design variables, and the peak value of the striking force and the amplitude of the pulsation of the striking force as the target variables. The collaborative optimization design method of the nozzle was determined by combining the orthogonal test method, the back propagation neural network, and the nondominated sorting genetic algorithm. As indicated by the results, when the inlet pressure was 3 MPa, the factors ranked as follows in terms of their effects on the jet performance of the nozzle: the chamber fillet, the outlet-tube diameter, chamber diameter, and the chamber length. To verify the feasibility of the collaborative optimization method, the nozzle was fabricated via 3D printing, and the simulation model was verified by testing. This study provides support to the development of design theory for self-oscillating pulsed cavitation jet nozzles.\",\"PeriodicalId\":23285,\"journal\":{\"name\":\"Transactions of The Canadian Society for Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Canadian Society for Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1139/tcsme-2021-0092\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Canadian Society for Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1139/tcsme-2021-0092","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

自激振荡脉冲空化射流喷嘴的峰值和脉动幅值是评价射流性能的重要指标。建立了喷嘴喷射过程的仿真模型,研究了喷嘴内外流场的演化机理。以腔体圆角、腔体直径、腔体长度和出口管径为设计变量,以冲击力峰值和冲击力脉动幅值为目标变量。结合正交试验法、反向传播神经网络和非支配排序遗传算法,确定了喷嘴协同优化设计方法。结果表明,当进口压力为3 MPa时,对喷嘴喷射性能影响最大的因素依次为:腔室圆角、出口管径、腔室直径和腔室长度。为了验证协同优化方法的可行性,采用3D打印技术制作了喷嘴,并通过测试验证了仿真模型。该研究为自振荡脉冲空化射流设计理论的发展提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nozzle resonance mechanism and cooperative optimization of self-excited oscillating pulse cavitation jet
The peak value and pulsation amplitude of the self-excited oscillating pulse cavitation jet nozzle are essential indices to evaluate the jet performance. We established a simulation model of the jet process of the nozzle to investigate the evolution mechanism of the inner and outer flow fields. We used the chamber fillet, chamber diameter, chamber length, and outlet-tube diameter as the design variables, and the peak value of the striking force and the amplitude of the pulsation of the striking force as the target variables. The collaborative optimization design method of the nozzle was determined by combining the orthogonal test method, the back propagation neural network, and the nondominated sorting genetic algorithm. As indicated by the results, when the inlet pressure was 3 MPa, the factors ranked as follows in terms of their effects on the jet performance of the nozzle: the chamber fillet, the outlet-tube diameter, chamber diameter, and the chamber length. To verify the feasibility of the collaborative optimization method, the nozzle was fabricated via 3D printing, and the simulation model was verified by testing. This study provides support to the development of design theory for self-oscillating pulsed cavitation jet nozzles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
53
审稿时长
5 months
期刊介绍: Published since 1972, Transactions of the Canadian Society for Mechanical Engineering is a quarterly journal that publishes comprehensive research articles and notes in the broad field of mechanical engineering. New advances in energy systems, biomechanics, engineering analysis and design, environmental engineering, materials technology, advanced manufacturing, mechatronics, MEMS, nanotechnology, thermo-fluids engineering, and transportation systems are featured.
期刊最新文献
Novel design and motion analysis of an omni-tread snake-like robot for narrow space inspection Dynamic Characteristics of electromechanical coupling of body-suspended drive system for high-speed trains under wheel polygonal wear Closed-Loop Control of Surface Preparation for Metallizing Fiber-Reinforced Polymer Composites Study on the temperature dissipation performance of brake pads with different surface patterns Experimental Evaluation of a Small-Sized Continuum Robot for Grasping Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1