用于数据采集、癫痫发作/行为检测和大脑刺激的植入式/头皮脑电图芯片的创新硅实现介绍和综述

Weiwei Shi, Jinyong Zhang, Zhiguo Zhang, Lizhi Hu, Yongqian Su
{"title":"用于数据采集、癫痫发作/行为检测和大脑刺激的植入式/头皮脑电图芯片的创新硅实现介绍和综述","authors":"Weiwei Shi, Jinyong Zhang, Zhiguo Zhang, Lizhi Hu, Yongqian Su","doi":"10.26599/BSA.2020.9050024","DOIUrl":null,"url":null,"abstract":"Technological advances in the semiconductor industry and the increasing demand and development of wearable medical systems have enabled the development of dedicated chips for complex electroencephalogram (EEG) signal processing with smart functions and artificial intelligence‐based detections/classifications. Around 10 million transistors are integrated into a 1 mm2 silicon wafer surface in the dedicated chip, making wearable EEG systems a powerful dedicated processor instead of a wireless raw data transceiver. The reduction of amplifiers and analog‐digital converters on the silicon surface makes it possible to place the analog front‐end circuits within a tiny packaged chip; therefore, enabling high‐count EEG acquisition channels. This article introduces and reviews the state‐of‐the‐art dedicated chip designs for EEG processing, particularly for wearable systems. Furthermore, the analog circuits and digital platforms are included, and the technical details of circuit topology and logic architecture are presented in detail.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An introduction and review on innovative silicon implementations of implantable/scalp EEG chips for data acquisition, seizure/behavior detection, and brain stimulation\",\"authors\":\"Weiwei Shi, Jinyong Zhang, Zhiguo Zhang, Lizhi Hu, Yongqian Su\",\"doi\":\"10.26599/BSA.2020.9050024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technological advances in the semiconductor industry and the increasing demand and development of wearable medical systems have enabled the development of dedicated chips for complex electroencephalogram (EEG) signal processing with smart functions and artificial intelligence‐based detections/classifications. Around 10 million transistors are integrated into a 1 mm2 silicon wafer surface in the dedicated chip, making wearable EEG systems a powerful dedicated processor instead of a wireless raw data transceiver. The reduction of amplifiers and analog‐digital converters on the silicon surface makes it possible to place the analog front‐end circuits within a tiny packaged chip; therefore, enabling high‐count EEG acquisition channels. This article introduces and reviews the state‐of‐the‐art dedicated chip designs for EEG processing, particularly for wearable systems. Furthermore, the analog circuits and digital platforms are included, and the technical details of circuit topology and logic architecture are presented in detail.\",\"PeriodicalId\":67062,\"journal\":{\"name\":\"Brain Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Science Advances\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.26599/BSA.2020.9050024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Science Advances","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26599/BSA.2020.9050024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

半导体行业的技术进步以及对可穿戴医疗系统日益增长的需求和发展,使得开发出具有智能功能和基于人工智能的检测/分类的复杂脑电图(EEG)信号处理专用芯片成为可能。大约1000万个晶体管集成在专用芯片的1平方毫米硅片表面,使可穿戴脑电图系统成为一个强大的专用处理器,而不是无线原始数据收发器。硅表面放大器和模数转换器的减少使得将模拟前端电路放置在微小封装芯片内成为可能;因此,能够实现高计数EEG采集通道。本文介绍并回顾了用于脑电处理,特别是可穿戴系统的最先进专用芯片设计。此外,还包括模拟电路和数字平台,并详细介绍了电路拓扑和逻辑架构的技术细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An introduction and review on innovative silicon implementations of implantable/scalp EEG chips for data acquisition, seizure/behavior detection, and brain stimulation
Technological advances in the semiconductor industry and the increasing demand and development of wearable medical systems have enabled the development of dedicated chips for complex electroencephalogram (EEG) signal processing with smart functions and artificial intelligence‐based detections/classifications. Around 10 million transistors are integrated into a 1 mm2 silicon wafer surface in the dedicated chip, making wearable EEG systems a powerful dedicated processor instead of a wireless raw data transceiver. The reduction of amplifiers and analog‐digital converters on the silicon surface makes it possible to place the analog front‐end circuits within a tiny packaged chip; therefore, enabling high‐count EEG acquisition channels. This article introduces and reviews the state‐of‐the‐art dedicated chip designs for EEG processing, particularly for wearable systems. Furthermore, the analog circuits and digital platforms are included, and the technical details of circuit topology and logic architecture are presented in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
27
审稿时长
10 weeks
期刊最新文献
A review of deep learning methods for cross-subject rapid serial visual presentation detection in World Robot Contest 2022 Overview of recognition methods for SSVEP-based BCIs in World Robot Contest 2022: MATLAB undergraduate group Algorithm contest of motor imagery BCI in the World Robot Contest 2022: A survey Winning algorithms in BCI Controlled Robot Contest in World Robot Contest 2022: BCI Turing Test Overview of the winning approaches in 2022 World Robot Contest Championship–Asynchronous SSVEP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1