{"title":"利用整合子作为生物标记物评估抗微生物基因在农场动物粪便中的传播和多样性","authors":"Yathrib Al-Ubaidy, Amjed Alsultan","doi":"10.22207/jpam.17.3.35","DOIUrl":null,"url":null,"abstract":"Antimicrobial agents are widely used for treatment of animal and human diseases. Heavy use of antimicrobial agents permits bacteria to develop resistance to these agents specifically when a dose of antibiotic is insufficient or course of treatment is incomplete. Antimicrobial resistance genes (ARGs) are usually associated with mobile genetic elements (MGEs) including Integron therefore; these genes can transmit among bacteria via horizontal transmission. The current study was conducted to assess the possible role of manure in dissemination of antimicrobial resistance. The presence, quantitate, and diversity of resistance genes associated with Integron class 1 have been assessed using conventional and quantitative polymerase chain reaction (PCR) combined with sequencing of gene cassette within Integron and analysis of sequenced data by blast tool. Thirty-eight samples were found a positive for Integron and concentration of Integron in positive sample ranged from from 106-1010 copies/g of manure. High frequencies were detected to genes that encoded to sulphonamide and ammonium compound resistance. These genes were detected in 25% and 23% respectively of the total manure samples. In general, the detected genes in manure functionally belong to five protein families including Efflux pump, DNA repair, heavy metal resistance, membrane protein, and antibiotic resistance. Manure might act as a hotspot from which ARGs emerge and transfer to the environment and then to the animal and human environments.","PeriodicalId":16968,"journal":{"name":"Journal of Pure and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using of Integrons as Biomarker to Assess Dissemination and Diversity of Antimicrobial Resistance Genes in Farm Animal Manure\",\"authors\":\"Yathrib Al-Ubaidy, Amjed Alsultan\",\"doi\":\"10.22207/jpam.17.3.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antimicrobial agents are widely used for treatment of animal and human diseases. Heavy use of antimicrobial agents permits bacteria to develop resistance to these agents specifically when a dose of antibiotic is insufficient or course of treatment is incomplete. Antimicrobial resistance genes (ARGs) are usually associated with mobile genetic elements (MGEs) including Integron therefore; these genes can transmit among bacteria via horizontal transmission. The current study was conducted to assess the possible role of manure in dissemination of antimicrobial resistance. The presence, quantitate, and diversity of resistance genes associated with Integron class 1 have been assessed using conventional and quantitative polymerase chain reaction (PCR) combined with sequencing of gene cassette within Integron and analysis of sequenced data by blast tool. Thirty-eight samples were found a positive for Integron and concentration of Integron in positive sample ranged from from 106-1010 copies/g of manure. High frequencies were detected to genes that encoded to sulphonamide and ammonium compound resistance. These genes were detected in 25% and 23% respectively of the total manure samples. In general, the detected genes in manure functionally belong to five protein families including Efflux pump, DNA repair, heavy metal resistance, membrane protein, and antibiotic resistance. Manure might act as a hotspot from which ARGs emerge and transfer to the environment and then to the animal and human environments.\",\"PeriodicalId\":16968,\"journal\":{\"name\":\"Journal of Pure and Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22207/jpam.17.3.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22207/jpam.17.3.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Using of Integrons as Biomarker to Assess Dissemination and Diversity of Antimicrobial Resistance Genes in Farm Animal Manure
Antimicrobial agents are widely used for treatment of animal and human diseases. Heavy use of antimicrobial agents permits bacteria to develop resistance to these agents specifically when a dose of antibiotic is insufficient or course of treatment is incomplete. Antimicrobial resistance genes (ARGs) are usually associated with mobile genetic elements (MGEs) including Integron therefore; these genes can transmit among bacteria via horizontal transmission. The current study was conducted to assess the possible role of manure in dissemination of antimicrobial resistance. The presence, quantitate, and diversity of resistance genes associated with Integron class 1 have been assessed using conventional and quantitative polymerase chain reaction (PCR) combined with sequencing of gene cassette within Integron and analysis of sequenced data by blast tool. Thirty-eight samples were found a positive for Integron and concentration of Integron in positive sample ranged from from 106-1010 copies/g of manure. High frequencies were detected to genes that encoded to sulphonamide and ammonium compound resistance. These genes were detected in 25% and 23% respectively of the total manure samples. In general, the detected genes in manure functionally belong to five protein families including Efflux pump, DNA repair, heavy metal resistance, membrane protein, and antibiotic resistance. Manure might act as a hotspot from which ARGs emerge and transfer to the environment and then to the animal and human environments.
期刊介绍:
Journal of Pure and Applied Microbiology (JPAM) is a peer-reviewed, open access international journal of microbiology aims to advance and disseminate research among scientists, academics, clinicians and microbiologists around the world. JPAM publishes high-quality research in all aspects of microbiology in both online and print form on quarterly basis.