印度Raniganj煤田煤层气储层建模与预测

Methane Pub Date : 2022-09-21 DOI:10.3390/methane1040019
D. Panwar, R. Chaurasia, V. K. Saxena, Ashutosh Kumar Singh
{"title":"印度Raniganj煤田煤层气储层建模与预测","authors":"D. Panwar, R. Chaurasia, V. K. Saxena, Ashutosh Kumar Singh","doi":"10.3390/methane1040019","DOIUrl":null,"url":null,"abstract":"Demand for a cleaner source of energy is increasing in India. In the search for alternate energy sources, coal bed methane gas receives considerable attention for its potential as a good energy source. During the coalification process, methane gas is captured in the coal seams and later released during coal mining operations. Coal bed methane separation is crucial for both economic benefit and methane emission reduction. The methane production from seams is an efficient way to reduce greenhouse emissions and provide a safe mining operation environment. In India, the production of coal bed methane on a commercial scale has been recently observed. In the present paper, an attempt is made to understand and establish a 3-D excavation of coal bed methane from reservoir simulation (COMET3) for Gondwana coal seams in the Sitarampur block of the Raniganj coalfield in India. The simulation study was carried out for a period of 25 years for the recovery of methane from the reservoir. It is observed from the simulation study that 372 million cubic meters CO2 equivalent greenhouse gas emissions can be prevented by the extraction of methane with space and time. The fracture gas concentration increases with time, and it is observed that fractures are fully saturated with gas in 3000 days.","PeriodicalId":74177,"journal":{"name":"Methane","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Modeling and Forecasting of Coal Bed Methane Reservoir from Raniganj Coalfield, India\",\"authors\":\"D. Panwar, R. Chaurasia, V. K. Saxena, Ashutosh Kumar Singh\",\"doi\":\"10.3390/methane1040019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demand for a cleaner source of energy is increasing in India. In the search for alternate energy sources, coal bed methane gas receives considerable attention for its potential as a good energy source. During the coalification process, methane gas is captured in the coal seams and later released during coal mining operations. Coal bed methane separation is crucial for both economic benefit and methane emission reduction. The methane production from seams is an efficient way to reduce greenhouse emissions and provide a safe mining operation environment. In India, the production of coal bed methane on a commercial scale has been recently observed. In the present paper, an attempt is made to understand and establish a 3-D excavation of coal bed methane from reservoir simulation (COMET3) for Gondwana coal seams in the Sitarampur block of the Raniganj coalfield in India. The simulation study was carried out for a period of 25 years for the recovery of methane from the reservoir. It is observed from the simulation study that 372 million cubic meters CO2 equivalent greenhouse gas emissions can be prevented by the extraction of methane with space and time. The fracture gas concentration increases with time, and it is observed that fractures are fully saturated with gas in 3000 days.\",\"PeriodicalId\":74177,\"journal\":{\"name\":\"Methane\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methane\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/methane1040019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methane","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/methane1040019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

印度对清洁能源的需求正在增加。在寻找替代能源的过程中,煤层气因其作为一种良好能源的潜力而备受关注。在煤化过程中,煤层中捕获甲烷气体,然后在煤矿开采过程中释放。煤层气分离对经济效益和甲烷减排都至关重要。煤层甲烷生产是减少温室气体排放和提供安全采矿作业环境的有效途径。在印度,最近观察到了商业规模的煤层气生产。本文试图了解并建立印度Raniganj煤田Sitarampur区块冈瓦纳大陆煤层的煤层气储层模拟三维挖掘(COMET3)。为从储层中回收甲烷,进行了为期25年的模拟研究。从模拟研究中可以观察到,3.72亿立方米二氧化碳当量的温室气体排放可以通过在空间和时间上提取甲烷来防止。裂缝气体浓度随时间增加,观察到裂缝在3000天内完全饱和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and Forecasting of Coal Bed Methane Reservoir from Raniganj Coalfield, India
Demand for a cleaner source of energy is increasing in India. In the search for alternate energy sources, coal bed methane gas receives considerable attention for its potential as a good energy source. During the coalification process, methane gas is captured in the coal seams and later released during coal mining operations. Coal bed methane separation is crucial for both economic benefit and methane emission reduction. The methane production from seams is an efficient way to reduce greenhouse emissions and provide a safe mining operation environment. In India, the production of coal bed methane on a commercial scale has been recently observed. In the present paper, an attempt is made to understand and establish a 3-D excavation of coal bed methane from reservoir simulation (COMET3) for Gondwana coal seams in the Sitarampur block of the Raniganj coalfield in India. The simulation study was carried out for a period of 25 years for the recovery of methane from the reservoir. It is observed from the simulation study that 372 million cubic meters CO2 equivalent greenhouse gas emissions can be prevented by the extraction of methane with space and time. The fracture gas concentration increases with time, and it is observed that fractures are fully saturated with gas in 3000 days.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Digestate from a Methane Fermentation Process for Supplying Water and Nutrients in Sweet Potato Cultivation in Sandy Soil Pathways toward Climate-Neutral Red Meat Production Recent Advances in the Use of Controlled Nanocatalysts in Methane Conversion Reactions Dry Reforming of CH4 Using a Microreactor A Study on the Heterogeneity and Anisotropy of the Porous Grout Body Created in the Stabilization of a Methane Hydrate Reservoir through Grouting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1