{"title":"具有一阶积分的单调非自治动力系统的Levinson中心结构","authors":"D. Cheban","doi":"10.37193/cjm.2022.01.07","DOIUrl":null,"url":null,"abstract":"In this paper we give a description of the structure of compact global attractor (Levinson center) for monotone Bohr/Levitan almost periodic dynamical system $x'=f(t,x)$ (*) with the strictly monotone first integral. It is shown that Levinson center of equation (*) consists of the Bohr/Levitan almost periodic (respectively, almost automorphic, recurrent or Poisson stable) solutions. We establish the main results in the framework of general non-autonomous (cocycle) dynamical systems. We also give some applications of theses results to different classes of differential/difference equations.","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the structure of the Levinson center for monotone non-autonomous dynamical systems with a first integral\",\"authors\":\"D. Cheban\",\"doi\":\"10.37193/cjm.2022.01.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we give a description of the structure of compact global attractor (Levinson center) for monotone Bohr/Levitan almost periodic dynamical system $x'=f(t,x)$ (*) with the strictly monotone first integral. It is shown that Levinson center of equation (*) consists of the Bohr/Levitan almost periodic (respectively, almost automorphic, recurrent or Poisson stable) solutions. We establish the main results in the framework of general non-autonomous (cocycle) dynamical systems. We also give some applications of theses results to different classes of differential/difference equations.\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2022.01.07\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2022.01.07","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the structure of the Levinson center for monotone non-autonomous dynamical systems with a first integral
In this paper we give a description of the structure of compact global attractor (Levinson center) for monotone Bohr/Levitan almost periodic dynamical system $x'=f(t,x)$ (*) with the strictly monotone first integral. It is shown that Levinson center of equation (*) consists of the Bohr/Levitan almost periodic (respectively, almost automorphic, recurrent or Poisson stable) solutions. We establish the main results in the framework of general non-autonomous (cocycle) dynamical systems. We also give some applications of theses results to different classes of differential/difference equations.
期刊介绍:
Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.