登革热传播季节性模型的全球动态

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-04-12 DOI:10.15388/namc.2023.28.31958
Min Zhu, Tingting Feng, Yong Xu, Jinde Cao
{"title":"登革热传播季节性模型的全球动态","authors":"Min Zhu, Tingting Feng, Yong Xu, Jinde Cao","doi":"10.15388/namc.2023.28.31958","DOIUrl":null,"url":null,"abstract":"The changes of seasons cause that the transmission of dengue fever is characterized by periodicity. We develop a dengue fever transmission model incorporating seasonal periodicity and spatial heterogeneity. Based on the well-posedness of solution for this model, we propose its basic reproduction number R0, and we discuss the properties of this number including its limiting form when the diffusion coefficients change. Moreover, the dynamical behavior of this model infers that if R0 ⩽ 1, then the disease-free periodic solution is globally asymptotically stable, and if R0 > 1, then the model possesses a positive periodic solution, which is globally asymptotically stable. These theoretical findings are further illustrated by the final numerical simulations. Additionally, we add that the similar problem has been investigated by M. Zhu and Y. Xu [A time-periodic dengue fever model in a heterogeneous environment, Math. Comput. Simul., 155:115–129, 2019] in which some dynamical results have been studied only on the cases R0 < 1 and R0 > 1. Our results not only include the scenario on the case R0 = 1, but also involve the more succinct conditions on the cases R0 < 1 and R0 > 1.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global dynamics of a dengue fever model incorporating transmission seasonality\",\"authors\":\"Min Zhu, Tingting Feng, Yong Xu, Jinde Cao\",\"doi\":\"10.15388/namc.2023.28.31958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The changes of seasons cause that the transmission of dengue fever is characterized by periodicity. We develop a dengue fever transmission model incorporating seasonal periodicity and spatial heterogeneity. Based on the well-posedness of solution for this model, we propose its basic reproduction number R0, and we discuss the properties of this number including its limiting form when the diffusion coefficients change. Moreover, the dynamical behavior of this model infers that if R0 ⩽ 1, then the disease-free periodic solution is globally asymptotically stable, and if R0 > 1, then the model possesses a positive periodic solution, which is globally asymptotically stable. These theoretical findings are further illustrated by the final numerical simulations. Additionally, we add that the similar problem has been investigated by M. Zhu and Y. Xu [A time-periodic dengue fever model in a heterogeneous environment, Math. Comput. Simul., 155:115–129, 2019] in which some dynamical results have been studied only on the cases R0 < 1 and R0 > 1. Our results not only include the scenario on the case R0 = 1, but also involve the more succinct conditions on the cases R0 < 1 and R0 > 1.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2023.28.31958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2023.28.31958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

季节的变化使登革热的传播具有周期性。我们建立了一个结合季节周期性和空间异质性的登革热传播模型。基于该模型解的适定性,给出了该模型的基本再现数R0,并讨论了该数在扩散系数变化时的性质及其极限形式。此外,该模型的动力学行为表明,如果R0 < 1,则无病周期解是全局渐近稳定的;如果R0 < 1,则模型具有一个全局渐近稳定的正周期解。最后的数值模拟进一步说明了这些理论发现。此外,我们补充说,M. Zhu和Y. Xu[异质环境中的时间周期登革热模型,数学]已经研究了类似的问题。第一版。同时。[j],其中一些动力学结果只在R0 < 1和R0 bb0 1的情况下进行了研究。我们的结果不仅包括R0 = 1情况下的情形,还包括R0 < 1和R0 > 1情况下更简洁的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Global dynamics of a dengue fever model incorporating transmission seasonality
The changes of seasons cause that the transmission of dengue fever is characterized by periodicity. We develop a dengue fever transmission model incorporating seasonal periodicity and spatial heterogeneity. Based on the well-posedness of solution for this model, we propose its basic reproduction number R0, and we discuss the properties of this number including its limiting form when the diffusion coefficients change. Moreover, the dynamical behavior of this model infers that if R0 ⩽ 1, then the disease-free periodic solution is globally asymptotically stable, and if R0 > 1, then the model possesses a positive periodic solution, which is globally asymptotically stable. These theoretical findings are further illustrated by the final numerical simulations. Additionally, we add that the similar problem has been investigated by M. Zhu and Y. Xu [A time-periodic dengue fever model in a heterogeneous environment, Math. Comput. Simul., 155:115–129, 2019] in which some dynamical results have been studied only on the cases R0 < 1 and R0 > 1. Our results not only include the scenario on the case R0 = 1, but also involve the more succinct conditions on the cases R0 < 1 and R0 > 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1