基于归一化流的上下文运动模型

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2021-08-13 DOI:10.1007/s10182-021-00412-w
Samuel G. Fadel, Sebastian Mair, Ricardo da Silva Torres, Ulf Brefeld
{"title":"基于归一化流的上下文运动模型","authors":"Samuel G. Fadel,&nbsp;Sebastian Mair,&nbsp;Ricardo da Silva Torres,&nbsp;Ulf Brefeld","doi":"10.1007/s10182-021-00412-w","DOIUrl":null,"url":null,"abstract":"<div><p>Movement models predict positions of players (or objects in general) over time and are thus key to analyzing spatiotemporal data as it is often used in sports analytics. Existing movement models are either designed from physical principles or are entirely data-driven. However, the former suffers from oversimplifications to achieve feasible and interpretable models, while the latter relies on computationally costly, from a current point of view, nonparametric density estimations and require maintaining multiple estimators, each responsible for different types of movements (e.g., such as different velocities). In this paper, we propose a unified contextual probabilistic movement model based on normalizing flows. Our approach learns the desired densities by directly optimizing the likelihood and maintains only a single contextual model that can be conditioned on auxiliary variables. Training is simultaneously performed on all observed types of movements, resulting in an effective and efficient movement model. We empirically evaluate our approach on spatiotemporal data from professional soccer. Our findings show that our approach outperforms the state of the art while being orders of magnitude more efficient with respect to computation time and memory requirements.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10182-021-00412-w","citationCount":"3","resultStr":"{\"title\":\"Contextual movement models based on normalizing flows\",\"authors\":\"Samuel G. Fadel,&nbsp;Sebastian Mair,&nbsp;Ricardo da Silva Torres,&nbsp;Ulf Brefeld\",\"doi\":\"10.1007/s10182-021-00412-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Movement models predict positions of players (or objects in general) over time and are thus key to analyzing spatiotemporal data as it is often used in sports analytics. Existing movement models are either designed from physical principles or are entirely data-driven. However, the former suffers from oversimplifications to achieve feasible and interpretable models, while the latter relies on computationally costly, from a current point of view, nonparametric density estimations and require maintaining multiple estimators, each responsible for different types of movements (e.g., such as different velocities). In this paper, we propose a unified contextual probabilistic movement model based on normalizing flows. Our approach learns the desired densities by directly optimizing the likelihood and maintains only a single contextual model that can be conditioned on auxiliary variables. Training is simultaneously performed on all observed types of movements, resulting in an effective and efficient movement model. We empirically evaluate our approach on spatiotemporal data from professional soccer. Our findings show that our approach outperforms the state of the art while being orders of magnitude more efficient with respect to computation time and memory requirements.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10182-021-00412-w\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10182-021-00412-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-021-00412-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

随着时间的推移,运动模型预测球员(或一般物体)的位置,因此是分析时空数据的关键,因为它经常用于体育分析。现有的运动模型要么是根据物理原理设计的,要么是完全由数据驱动的。然而,前者为实现可行和可解释的模型而过度简化,而后者依赖于计算成本高昂的非参数密度估计,并且需要维护多个估计器,每个估计器负责不同类型的运动(例如,例如不同的速度)。本文提出了一种基于归一化流的统一上下文概率运动模型。我们的方法通过直接优化可能性来学习所需的密度,并且只维持一个可以以辅助变量为条件的单一上下文模型。训练在所有观察到的运动类型上同时进行,从而产生有效和高效的运动模型。我们用职业足球的时空数据对我们的方法进行了实证评估。我们的研究结果表明,我们的方法在计算时间和内存需求方面的效率提高了几个数量级,同时优于目前的技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contextual movement models based on normalizing flows

Movement models predict positions of players (or objects in general) over time and are thus key to analyzing spatiotemporal data as it is often used in sports analytics. Existing movement models are either designed from physical principles or are entirely data-driven. However, the former suffers from oversimplifications to achieve feasible and interpretable models, while the latter relies on computationally costly, from a current point of view, nonparametric density estimations and require maintaining multiple estimators, each responsible for different types of movements (e.g., such as different velocities). In this paper, we propose a unified contextual probabilistic movement model based on normalizing flows. Our approach learns the desired densities by directly optimizing the likelihood and maintains only a single contextual model that can be conditioned on auxiliary variables. Training is simultaneously performed on all observed types of movements, resulting in an effective and efficient movement model. We empirically evaluate our approach on spatiotemporal data from professional soccer. Our findings show that our approach outperforms the state of the art while being orders of magnitude more efficient with respect to computation time and memory requirements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1