Yi Wang, Kanqi Wang, Maosheng Zhang, Hongzhi Zheng, Hui Zhang
{"title":"WSN多拓扑分层协同混合粒子群优化算法","authors":"Yi Wang, Kanqi Wang, Maosheng Zhang, Hongzhi Zheng, Hui Zhang","doi":"10.23919/JCC.fa.2022-0806.202308","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSN) are widely used in many situations, but the disordered and random deployment mode will waste a lot of sensor resources. This paper proposes a multi-topology hierarchical collaborative particle swarm optimization (MHCHPSO) to optimize sensor deployment location and improve the coverage of WSN. MHCHPSO divides the population into three types topology: diversity topology for global exploration, fast convergence topology for local development, and collaboration topology for exploration and development. All topologies are optimized in parallel to overcome the precocious convergence of PSO. This paper compares with various heuristic algorithms at CEC 2013, CEC 2015, and CEC 2017. The experimental results show that MHCHPSO outperforms the comparison algorithms. In addition, MHCHPSO is applied to the WSN localization optimization, and the experimental results confirm the optimization ability of MHCHPSO in practical engineering problems.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"20 1","pages":"254-275"},"PeriodicalIF":3.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-topology hierarchical collaborative hybrid particle swarm optimization algorithm for WSN\",\"authors\":\"Yi Wang, Kanqi Wang, Maosheng Zhang, Hongzhi Zheng, Hui Zhang\",\"doi\":\"10.23919/JCC.fa.2022-0806.202308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor networks (WSN) are widely used in many situations, but the disordered and random deployment mode will waste a lot of sensor resources. This paper proposes a multi-topology hierarchical collaborative particle swarm optimization (MHCHPSO) to optimize sensor deployment location and improve the coverage of WSN. MHCHPSO divides the population into three types topology: diversity topology for global exploration, fast convergence topology for local development, and collaboration topology for exploration and development. All topologies are optimized in parallel to overcome the precocious convergence of PSO. This paper compares with various heuristic algorithms at CEC 2013, CEC 2015, and CEC 2017. The experimental results show that MHCHPSO outperforms the comparison algorithms. In addition, MHCHPSO is applied to the WSN localization optimization, and the experimental results confirm the optimization ability of MHCHPSO in practical engineering problems.\",\"PeriodicalId\":9814,\"journal\":{\"name\":\"China Communications\",\"volume\":\"20 1\",\"pages\":\"254-275\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/JCC.fa.2022-0806.202308\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/JCC.fa.2022-0806.202308","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Multi-topology hierarchical collaborative hybrid particle swarm optimization algorithm for WSN
Wireless sensor networks (WSN) are widely used in many situations, but the disordered and random deployment mode will waste a lot of sensor resources. This paper proposes a multi-topology hierarchical collaborative particle swarm optimization (MHCHPSO) to optimize sensor deployment location and improve the coverage of WSN. MHCHPSO divides the population into three types topology: diversity topology for global exploration, fast convergence topology for local development, and collaboration topology for exploration and development. All topologies are optimized in parallel to overcome the precocious convergence of PSO. This paper compares with various heuristic algorithms at CEC 2013, CEC 2015, and CEC 2017. The experimental results show that MHCHPSO outperforms the comparison algorithms. In addition, MHCHPSO is applied to the WSN localization optimization, and the experimental results confirm the optimization ability of MHCHPSO in practical engineering problems.
期刊介绍:
China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide.
The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology.
China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.