Tobias Runge, M. Servetto, A. Potanin, Ina Schaefer
{"title":"面向对象信息流控制的不变性和封装","authors":"Tobias Runge, M. Servetto, A. Potanin, Ina Schaefer","doi":"10.1145/3573270","DOIUrl":null,"url":null,"abstract":"Security-critical software applications contain confidential information which has to be protected from leaking to unauthorized systems. With language-based techniques, the confidentiality of applications can be enforced. Such techniques are for example type systems that enforce an information flow policy through typing rules. The precision of such type systems, especially in object-oriented languages, is an area of active research: an appropriate system should not reject too many secure programs while soundly preserving noninterference. In this work, we introduce the language SIFO which supports information flow control for an object-oriented language with type modifiers. Type modifiers increase the precision of the type system by utilizing immutability and uniqueness properties of objects for the detection of information leaks. We present SIFO informally by using examples to demonstrate the applicability of the language, formalize the type system, prove noninterference, implement SIFO as a pluggable type system in the programming language L42, and evaluate it with a feasibility study and a benchmark.","PeriodicalId":50939,"journal":{"name":"ACM Transactions on Programming Languages and Systems","volume":"45 1","pages":"1 - 35"},"PeriodicalIF":1.5000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Immutability and Encapsulation for Sound OO Information Flow Control\",\"authors\":\"Tobias Runge, M. Servetto, A. Potanin, Ina Schaefer\",\"doi\":\"10.1145/3573270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security-critical software applications contain confidential information which has to be protected from leaking to unauthorized systems. With language-based techniques, the confidentiality of applications can be enforced. Such techniques are for example type systems that enforce an information flow policy through typing rules. The precision of such type systems, especially in object-oriented languages, is an area of active research: an appropriate system should not reject too many secure programs while soundly preserving noninterference. In this work, we introduce the language SIFO which supports information flow control for an object-oriented language with type modifiers. Type modifiers increase the precision of the type system by utilizing immutability and uniqueness properties of objects for the detection of information leaks. We present SIFO informally by using examples to demonstrate the applicability of the language, formalize the type system, prove noninterference, implement SIFO as a pluggable type system in the programming language L42, and evaluate it with a feasibility study and a benchmark.\",\"PeriodicalId\":50939,\"journal\":{\"name\":\"ACM Transactions on Programming Languages and Systems\",\"volume\":\"45 1\",\"pages\":\"1 - 35\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Programming Languages and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3573270\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Programming Languages and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3573270","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Immutability and Encapsulation for Sound OO Information Flow Control
Security-critical software applications contain confidential information which has to be protected from leaking to unauthorized systems. With language-based techniques, the confidentiality of applications can be enforced. Such techniques are for example type systems that enforce an information flow policy through typing rules. The precision of such type systems, especially in object-oriented languages, is an area of active research: an appropriate system should not reject too many secure programs while soundly preserving noninterference. In this work, we introduce the language SIFO which supports information flow control for an object-oriented language with type modifiers. Type modifiers increase the precision of the type system by utilizing immutability and uniqueness properties of objects for the detection of information leaks. We present SIFO informally by using examples to demonstrate the applicability of the language, formalize the type system, prove noninterference, implement SIFO as a pluggable type system in the programming language L42, and evaluate it with a feasibility study and a benchmark.
期刊介绍:
ACM Transactions on Programming Languages and Systems (TOPLAS) is the premier journal for reporting recent research advances in the areas of programming languages, and systems to assist the task of programming. Papers can be either theoretical or experimental in style, but in either case, they must contain innovative and novel content that advances the state of the art of programming languages and systems. We also invite strictly experimental papers that compare existing approaches, as well as tutorial and survey papers. The scope of TOPLAS includes, but is not limited to, the following subjects:
language design for sequential and parallel programming
programming language implementation
programming language semantics
compilers and interpreters
runtime systems for program execution
storage allocation and garbage collection
languages and methods for writing program specifications
languages and methods for secure and reliable programs
testing and verification of programs