浅水船舶交通监测和运输检测系统的结构模型和改进的远程广域网(LoRaWAN)

Q1 Multidisciplinary Emerging Science Journal Pub Date : 2023-07-12 DOI:10.28991/esj-2023-07-04-011
D. Saputra, F. Gaol, E. Abdurachman, D. I. Sensuse, T. Matsuo
{"title":"浅水船舶交通监测和运输检测系统的结构模型和改进的远程广域网(LoRaWAN)","authors":"D. Saputra, F. Gaol, E. Abdurachman, D. I. Sensuse, T. Matsuo","doi":"10.28991/esj-2023-07-04-011","DOIUrl":null,"url":null,"abstract":"Monitoring the movement of boats in shallow waters requires a real-time monitoring system. However, for small-size wooden boats, they are still monitored manually, and data is unavailable in real time, which makes it difficult to effectively monitor them. The integration of IoT platforms with the boat monitoring system is a challenging task, especially in the transport system. This paper has the objective of developing an architectural model of a modified LoRaWAN-based boat monitoring system that is connected to a GPS-based mobile device and base station. The proposed architectural model is an integration of Bluetooth Low Energy (BLE) and LoRaWAN networks, which are also tested in real time to solve the boat traffic monitoring issues. The field tests with parameters of signal transmission, location coordinates, and position of the boats are also presented. The analysis result shows the proposed model is suitable for waters with high noise levels, especially in shallow water and delta rivers. The signal noise can be reduced by extracting the real-time data. In addition, signal interference can be minimized. The performance of this system is also compared to the reference system in real conditions, which shows an adequate correlation result. This proof of concept forms an important basis for deploying it for large-scale applications and commercialization capabilities. Doi: 10.28991/ESJ-2023-07-04-011 Full Text: PDF","PeriodicalId":11586,"journal":{"name":"Emerging Science Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Architectural Model and Modified Long Range Wide Area Network (LoRaWAN) for Boat Traffic Monitoring and Transport Detection Systems in Shallow Waters\",\"authors\":\"D. Saputra, F. Gaol, E. Abdurachman, D. I. Sensuse, T. Matsuo\",\"doi\":\"10.28991/esj-2023-07-04-011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring the movement of boats in shallow waters requires a real-time monitoring system. However, for small-size wooden boats, they are still monitored manually, and data is unavailable in real time, which makes it difficult to effectively monitor them. The integration of IoT platforms with the boat monitoring system is a challenging task, especially in the transport system. This paper has the objective of developing an architectural model of a modified LoRaWAN-based boat monitoring system that is connected to a GPS-based mobile device and base station. The proposed architectural model is an integration of Bluetooth Low Energy (BLE) and LoRaWAN networks, which are also tested in real time to solve the boat traffic monitoring issues. The field tests with parameters of signal transmission, location coordinates, and position of the boats are also presented. The analysis result shows the proposed model is suitable for waters with high noise levels, especially in shallow water and delta rivers. The signal noise can be reduced by extracting the real-time data. In addition, signal interference can be minimized. The performance of this system is also compared to the reference system in real conditions, which shows an adequate correlation result. This proof of concept forms an important basis for deploying it for large-scale applications and commercialization capabilities. Doi: 10.28991/ESJ-2023-07-04-011 Full Text: PDF\",\"PeriodicalId\":11586,\"journal\":{\"name\":\"Emerging Science Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28991/esj-2023-07-04-011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/esj-2023-07-04-011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

监测浅水中船只的移动需要一个实时监测系统。然而,对于小型木船来说,它们仍然是手动监测的,并且无法实时获得数据,这使得很难对其进行有效监测。物联网平台与船舶监控系统的集成是一项具有挑战性的任务,尤其是在运输系统中。本文的目标是开发一种改进的基于LoRaWAN的船舶监控系统的架构模型,该系统连接到基于GPS的移动设备和基站。所提出的架构模型是蓝牙低能耗(BLE)和LoRaWAN网络的集成,它们也经过了实时测试,以解决船只交通监控问题。还介绍了信号传输参数、位置坐标和船只位置的现场测试。分析结果表明,该模型适用于高噪声水域,特别是浅水和三角洲河流。可以通过提取实时数据来降低信号噪声。此外,可以使信号干扰最小化。该系统的性能也与实际条件下的参考系统进行了比较,显示了足够的相关性结果。这种概念验证形成了将其部署到大规模应用程序和商业化能力的重要基础。Doi:10.2899/1ESJ-2023-07-04-011全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Architectural Model and Modified Long Range Wide Area Network (LoRaWAN) for Boat Traffic Monitoring and Transport Detection Systems in Shallow Waters
Monitoring the movement of boats in shallow waters requires a real-time monitoring system. However, for small-size wooden boats, they are still monitored manually, and data is unavailable in real time, which makes it difficult to effectively monitor them. The integration of IoT platforms with the boat monitoring system is a challenging task, especially in the transport system. This paper has the objective of developing an architectural model of a modified LoRaWAN-based boat monitoring system that is connected to a GPS-based mobile device and base station. The proposed architectural model is an integration of Bluetooth Low Energy (BLE) and LoRaWAN networks, which are also tested in real time to solve the boat traffic monitoring issues. The field tests with parameters of signal transmission, location coordinates, and position of the boats are also presented. The analysis result shows the proposed model is suitable for waters with high noise levels, especially in shallow water and delta rivers. The signal noise can be reduced by extracting the real-time data. In addition, signal interference can be minimized. The performance of this system is also compared to the reference system in real conditions, which shows an adequate correlation result. This proof of concept forms an important basis for deploying it for large-scale applications and commercialization capabilities. Doi: 10.28991/ESJ-2023-07-04-011 Full Text: PDF
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Emerging Science Journal
Emerging Science Journal Multidisciplinary-Multidisciplinary
CiteScore
5.40
自引率
0.00%
发文量
155
审稿时长
10 weeks
期刊最新文献
Beyond COVID-19 Lockdowns: Rethinking Mathematics Education from a Student Perspective Down-streaming Small-Scale Green Ammonia to Nitrogen-Phosphorus Fertilizer Tablets for Rural Communities Improved Fingerprint-Based Localization Based on Sequential Hybridization of Clustering Algorithms Prioritizing Critical Success Factors for Reverse Logistics as a Source of Competitive Advantage Assessment of the Development of the Circular Economy in the EU Countries: Comparative Analysis by Multiple Criteria Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1