Maria C Naskou, J. Tyma, J. Gordon, Alysha Berezny, Hannah Kemelmakher, Anna Chocallo Richey, J. Peroni
{"title":"马血小板裂解物凝胶:一种用于间充质干细胞递送的基质。","authors":"Maria C Naskou, J. Tyma, J. Gordon, Alysha Berezny, Hannah Kemelmakher, Anna Chocallo Richey, J. Peroni","doi":"10.1089/scd.2022.0097","DOIUrl":null,"url":null,"abstract":"A variety of bio-scaffolds have been developed as carriers for the delivery of Mesenchymal Stem Cells (MSCs) however many of them are unable to provide direct cell nourishment, a critical factor for survival and retention of MSCs at the site of delivery. Platelet lysate (PL) is a plasma derived product rich in growth factors, that can be turned into a gel matrix following the addition of calcium chloride. Our objective was to characterize growth factor and cytokine release of equine PL gel (ePL gel) encapsulated with MSCs over time and to measure the viability and proliferation of ePL gel-encapsulated MSCs for up to 14 days. Release of interleukin-1β (IL-1β), interleukin-10 (IL-10), transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), and platelet derived growth factor (PDGF-BB), as well as fibrinogen degradation, were measured from ePL gel with and without equine bone marrow derived MSCs and compared to MSCs in monolayer. MSC proliferation and viability within the gel were assessed up to 14 days. Compared to monolayer MSC cultures, significantly higher concentrations of IL-1β, IL-10, and TGF-β were measured from supernatants collected from ePL gel containing MSCs at various time points. Significantly lower concentrations of PDGF-BB were measured in the supernatant when MSCs were incorporated in ePL gel while VEGF tended to be increased compared to MSCs in monolayer. Incorporation in ePL gel for up to 14 days did not appear to affect viability and proliferation rates of MSCs as these were found to be similar to those measured in monolayer cell culture. ePL gel may have the potential to serve as bio-scaffold for MSC delivery since it appears to support the proliferation and viability of MSCs for up to 14 days.","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Equine platelet lysate gel: a matrix for mesenchymal stem cell delivery.\",\"authors\":\"Maria C Naskou, J. Tyma, J. Gordon, Alysha Berezny, Hannah Kemelmakher, Anna Chocallo Richey, J. Peroni\",\"doi\":\"10.1089/scd.2022.0097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A variety of bio-scaffolds have been developed as carriers for the delivery of Mesenchymal Stem Cells (MSCs) however many of them are unable to provide direct cell nourishment, a critical factor for survival and retention of MSCs at the site of delivery. Platelet lysate (PL) is a plasma derived product rich in growth factors, that can be turned into a gel matrix following the addition of calcium chloride. Our objective was to characterize growth factor and cytokine release of equine PL gel (ePL gel) encapsulated with MSCs over time and to measure the viability and proliferation of ePL gel-encapsulated MSCs for up to 14 days. Release of interleukin-1β (IL-1β), interleukin-10 (IL-10), transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), and platelet derived growth factor (PDGF-BB), as well as fibrinogen degradation, were measured from ePL gel with and without equine bone marrow derived MSCs and compared to MSCs in monolayer. MSC proliferation and viability within the gel were assessed up to 14 days. Compared to monolayer MSC cultures, significantly higher concentrations of IL-1β, IL-10, and TGF-β were measured from supernatants collected from ePL gel containing MSCs at various time points. Significantly lower concentrations of PDGF-BB were measured in the supernatant when MSCs were incorporated in ePL gel while VEGF tended to be increased compared to MSCs in monolayer. Incorporation in ePL gel for up to 14 days did not appear to affect viability and proliferation rates of MSCs as these were found to be similar to those measured in monolayer cell culture. ePL gel may have the potential to serve as bio-scaffold for MSC delivery since it appears to support the proliferation and viability of MSCs for up to 14 days.\",\"PeriodicalId\":21934,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2022.0097\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2022.0097","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Equine platelet lysate gel: a matrix for mesenchymal stem cell delivery.
A variety of bio-scaffolds have been developed as carriers for the delivery of Mesenchymal Stem Cells (MSCs) however many of them are unable to provide direct cell nourishment, a critical factor for survival and retention of MSCs at the site of delivery. Platelet lysate (PL) is a plasma derived product rich in growth factors, that can be turned into a gel matrix following the addition of calcium chloride. Our objective was to characterize growth factor and cytokine release of equine PL gel (ePL gel) encapsulated with MSCs over time and to measure the viability and proliferation of ePL gel-encapsulated MSCs for up to 14 days. Release of interleukin-1β (IL-1β), interleukin-10 (IL-10), transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), and platelet derived growth factor (PDGF-BB), as well as fibrinogen degradation, were measured from ePL gel with and without equine bone marrow derived MSCs and compared to MSCs in monolayer. MSC proliferation and viability within the gel were assessed up to 14 days. Compared to monolayer MSC cultures, significantly higher concentrations of IL-1β, IL-10, and TGF-β were measured from supernatants collected from ePL gel containing MSCs at various time points. Significantly lower concentrations of PDGF-BB were measured in the supernatant when MSCs were incorporated in ePL gel while VEGF tended to be increased compared to MSCs in monolayer. Incorporation in ePL gel for up to 14 days did not appear to affect viability and proliferation rates of MSCs as these were found to be similar to those measured in monolayer cell culture. ePL gel may have the potential to serve as bio-scaffold for MSC delivery since it appears to support the proliferation and viability of MSCs for up to 14 days.
期刊介绍:
Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings.
Stem Cells and Development coverage includes:
Embryogenesis and adult counterparts of this process
Physical processes linking stem cells, primary cell function, and structural development
Hypotheses exploring the relationship between genotype and phenotype
Development of vasculature, CNS, and other germ layer development and defects
Pluripotentiality of embryonic and somatic stem cells
The role of genetic and epigenetic factors in development