Kunwoo Kim, Seo-Yoon Ryu, C. Cheong, Seongjin Seo, Cheolmin Jang
{"title":"无绳吸尘器风机电机单元叶轮优化设计,提高流动性能,降低气动噪声","authors":"Kunwoo Kim, Seo-Yoon Ryu, C. Cheong, Seongjin Seo, Cheolmin Jang","doi":"10.7776/ASK.2020.39.5.379","DOIUrl":null,"url":null,"abstract":"In this study, the flow and noise performances of high-speed fan motor unit for cordless vacuum cleaner is improved by optimizing the impeller which drives the suction air through flow passage of the cordless vacuum cleaner. Firstly, the unsteady incompressible Reynolds averaged Navier-Stokes (RANS) equations are solved to investigate the flow through the fan motor unit using the computational fluid dynamics techniques. Based on flow field results, the Ffowcs-Williams and Hawkings (FW-H) integral equation is used to predict flow noise radiated from the impeller. Predicted results are compared to the measured ones, which confirms the validity of the numerical method used. It is found that the strong vortex is formed around the mid-chord region of the main blades where the blade curvature change rapidly. Given that vortex acts as a loss for flow and a noise source for noise, impeller blade is redesigned to suppress the identified vortex. The response surface method using two factors is employed to determine the optimum inlet and outlet sweep angles for maximum flow rate and minimum noise. Further analysis of finally selected design confirms the improved flow and noise performance.","PeriodicalId":42689,"journal":{"name":"Journal of the Acoustical Society of Korea","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal design of impeller in fan motor unit of cordless vacuum cleaner for improving flow performance and reducing aerodynamic noise\",\"authors\":\"Kunwoo Kim, Seo-Yoon Ryu, C. Cheong, Seongjin Seo, Cheolmin Jang\",\"doi\":\"10.7776/ASK.2020.39.5.379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the flow and noise performances of high-speed fan motor unit for cordless vacuum cleaner is improved by optimizing the impeller which drives the suction air through flow passage of the cordless vacuum cleaner. Firstly, the unsteady incompressible Reynolds averaged Navier-Stokes (RANS) equations are solved to investigate the flow through the fan motor unit using the computational fluid dynamics techniques. Based on flow field results, the Ffowcs-Williams and Hawkings (FW-H) integral equation is used to predict flow noise radiated from the impeller. Predicted results are compared to the measured ones, which confirms the validity of the numerical method used. It is found that the strong vortex is formed around the mid-chord region of the main blades where the blade curvature change rapidly. Given that vortex acts as a loss for flow and a noise source for noise, impeller blade is redesigned to suppress the identified vortex. The response surface method using two factors is employed to determine the optimum inlet and outlet sweep angles for maximum flow rate and minimum noise. Further analysis of finally selected design confirms the improved flow and noise performance.\",\"PeriodicalId\":42689,\"journal\":{\"name\":\"Journal of the Acoustical Society of Korea\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of Korea\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7776/ASK.2020.39.5.379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7776/ASK.2020.39.5.379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1
摘要
本研究通过优化驱动吸入空气通过无绳吸尘器流道的叶轮,改善了无绳吸尘器高速风机电机单元的流动性能和噪声性能。首先,利用计算流体力学技术求解非定常不可压缩Reynolds平均Navier-Stokes (RANS)方程,研究风机电机单元的流动。基于流场结果,采用Ffowcs-Williams and hawkins (FW-H)积分方程对叶轮辐射的流动噪声进行了预测。将预测结果与实测结果进行了比较,验证了数值方法的有效性。结果表明,在叶片曲率变化较快的主叶片中弦区周围形成强涡。考虑到涡旋是流动的损失和噪声的噪声源,对叶轮叶片进行了重新设计,以抑制已识别的涡旋。采用双因素响应面法确定了最大流量和最小噪声条件下的最佳进出口掠角。对最终选择的设计进行进一步分析,证实了改进后的流动性能和噪声性能。
Optimal design of impeller in fan motor unit of cordless vacuum cleaner for improving flow performance and reducing aerodynamic noise
In this study, the flow and noise performances of high-speed fan motor unit for cordless vacuum cleaner is improved by optimizing the impeller which drives the suction air through flow passage of the cordless vacuum cleaner. Firstly, the unsteady incompressible Reynolds averaged Navier-Stokes (RANS) equations are solved to investigate the flow through the fan motor unit using the computational fluid dynamics techniques. Based on flow field results, the Ffowcs-Williams and Hawkings (FW-H) integral equation is used to predict flow noise radiated from the impeller. Predicted results are compared to the measured ones, which confirms the validity of the numerical method used. It is found that the strong vortex is formed around the mid-chord region of the main blades where the blade curvature change rapidly. Given that vortex acts as a loss for flow and a noise source for noise, impeller blade is redesigned to suppress the identified vortex. The response surface method using two factors is employed to determine the optimum inlet and outlet sweep angles for maximum flow rate and minimum noise. Further analysis of finally selected design confirms the improved flow and noise performance.