{"title":"公平分配中的制约因素","authors":"Warut Suksompong","doi":"10.1145/3505156.3505162","DOIUrl":null,"url":null,"abstract":"The fair allocation of resources to interested agents is a fundamental problem in society. While the majority of the fair division literature assumes that all allocations are feasible, in practice there are often constraints on the allocation that can be chosen. In this survey, we discuss fairness guarantees for both divisible (cake cutting) and indivisible resources under several common types of constraints, including connectivity, cardinality, matroid, geometric, separation, budget, and conflict constraints. We also outline a number of open questions and directions.","PeriodicalId":56237,"journal":{"name":"ACM SIGecom Exchanges","volume":"19 1","pages":"46 - 61"},"PeriodicalIF":0.6000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Constraints in fair division\",\"authors\":\"Warut Suksompong\",\"doi\":\"10.1145/3505156.3505162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fair allocation of resources to interested agents is a fundamental problem in society. While the majority of the fair division literature assumes that all allocations are feasible, in practice there are often constraints on the allocation that can be chosen. In this survey, we discuss fairness guarantees for both divisible (cake cutting) and indivisible resources under several common types of constraints, including connectivity, cardinality, matroid, geometric, separation, budget, and conflict constraints. We also outline a number of open questions and directions.\",\"PeriodicalId\":56237,\"journal\":{\"name\":\"ACM SIGecom Exchanges\",\"volume\":\"19 1\",\"pages\":\"46 - 61\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGecom Exchanges\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3505156.3505162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGecom Exchanges","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3505156.3505162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The fair allocation of resources to interested agents is a fundamental problem in society. While the majority of the fair division literature assumes that all allocations are feasible, in practice there are often constraints on the allocation that can be chosen. In this survey, we discuss fairness guarantees for both divisible (cake cutting) and indivisible resources under several common types of constraints, including connectivity, cardinality, matroid, geometric, separation, budget, and conflict constraints. We also outline a number of open questions and directions.