{"title":"MEDVEDNICA(克罗地亚)含绿帘石钠长花岗岩演化的压力-温度-时间约束:中三叠世新构造海洋开放的进一步证据","authors":"D. Balen, P. Schneider, J. Opitz, H. Massonne","doi":"10.31577/geolcarp.73.5.2","DOIUrl":null,"url":null,"abstract":": Albite granite from Mt. Medvednica in northern Croatia is the only known surface appearance of granite in the complex Zagorje-Mid-Transdanubian zone. This granite contains almost pure albite (An 01 , ~50‒55 vol. %), quartz (~20‒25 vol. %), epidote (~1 vol. %), phengite (5‒12 vol. %), and secondary chlorite (~10‒15 vol. %) and calcite (~5 vol. %). Accessories are zircon, apatite, and ilmenite. The granite has a calc-alkaline geochemical signature with a metaluminous and high-Na character. CaO, MgO, and FeO contents are relatively low. Normalised contents of rare-earth elements (REE) show a relatively flat distribution of those that are heavy, suggesting a magma source in the lower continental crust. The modelled empirical relationship for average crustal thickness based on Sr/Y ratio and contents of REE indicates a 34 km thick continental crust. Zircon typology is characterised by the predominance of {100} prisms and {101} bipyramids. This typology, zircon chemistry, zircon saturation temperature (775 °C), and Ti-in-zircon temperature (mean 785 °C) also suggest a deep-seated magma source. Epidote and perhaps phengite crystallised at a pressure around 1.0 GPa from the melt according to thermodynamic modelling. Temperatures were 650 °C or more at this stage. A U–Pb concordia age of 242.9±4.0 Ma (2σ) was determined on zircon coinciding with the Middle Triassic peak of magmatic activity in the Dinarides, but also in the Southern Alps and Western Carpathians. The age is interpreted as marking the beginning of the fragmentation of continental lithosphere and the onset of rifting processes, which was followed by the broadening of the newly-formed Neotethys Ocean. constraints to the onset of the Mesozoic geodynamic evolution of a local branch of the Neotethys Ocean. The information on magma evolution and petrogenesis is provided by characteristics of the granite and critical minerals therein. We use new data on epidote chemistry and combine them with the zircon trace and isotopic chemistry to unravel and reconstruct the age, origin, and evolution of the acidic magma as a consequence of the onset of large-scale geodynamic processes.","PeriodicalId":12545,"journal":{"name":"Geologica Carpathica","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PRESSURE–TEMPERATURE–TIME CONSTRAINTS ON THE EVOLUTION OF EPIDOTE-BEARING ALBITE GRANITE FROM MT. MEDVEDNICA (CROATIA): FURTHER EVIDENCE OF THE MIDDLE TRIASSIC OPENING OF THE NEOTETHYS OCEAN\",\"authors\":\"D. Balen, P. Schneider, J. Opitz, H. Massonne\",\"doi\":\"10.31577/geolcarp.73.5.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Albite granite from Mt. Medvednica in northern Croatia is the only known surface appearance of granite in the complex Zagorje-Mid-Transdanubian zone. This granite contains almost pure albite (An 01 , ~50‒55 vol. %), quartz (~20‒25 vol. %), epidote (~1 vol. %), phengite (5‒12 vol. %), and secondary chlorite (~10‒15 vol. %) and calcite (~5 vol. %). Accessories are zircon, apatite, and ilmenite. The granite has a calc-alkaline geochemical signature with a metaluminous and high-Na character. CaO, MgO, and FeO contents are relatively low. Normalised contents of rare-earth elements (REE) show a relatively flat distribution of those that are heavy, suggesting a magma source in the lower continental crust. The modelled empirical relationship for average crustal thickness based on Sr/Y ratio and contents of REE indicates a 34 km thick continental crust. Zircon typology is characterised by the predominance of {100} prisms and {101} bipyramids. This typology, zircon chemistry, zircon saturation temperature (775 °C), and Ti-in-zircon temperature (mean 785 °C) also suggest a deep-seated magma source. Epidote and perhaps phengite crystallised at a pressure around 1.0 GPa from the melt according to thermodynamic modelling. Temperatures were 650 °C or more at this stage. A U–Pb concordia age of 242.9±4.0 Ma (2σ) was determined on zircon coinciding with the Middle Triassic peak of magmatic activity in the Dinarides, but also in the Southern Alps and Western Carpathians. The age is interpreted as marking the beginning of the fragmentation of continental lithosphere and the onset of rifting processes, which was followed by the broadening of the newly-formed Neotethys Ocean. constraints to the onset of the Mesozoic geodynamic evolution of a local branch of the Neotethys Ocean. The information on magma evolution and petrogenesis is provided by characteristics of the granite and critical minerals therein. We use new data on epidote chemistry and combine them with the zircon trace and isotopic chemistry to unravel and reconstruct the age, origin, and evolution of the acidic magma as a consequence of the onset of large-scale geodynamic processes.\",\"PeriodicalId\":12545,\"journal\":{\"name\":\"Geologica Carpathica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geologica Carpathica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.31577/geolcarp.73.5.2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geologica Carpathica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.31577/geolcarp.73.5.2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
PRESSURE–TEMPERATURE–TIME CONSTRAINTS ON THE EVOLUTION OF EPIDOTE-BEARING ALBITE GRANITE FROM MT. MEDVEDNICA (CROATIA): FURTHER EVIDENCE OF THE MIDDLE TRIASSIC OPENING OF THE NEOTETHYS OCEAN
: Albite granite from Mt. Medvednica in northern Croatia is the only known surface appearance of granite in the complex Zagorje-Mid-Transdanubian zone. This granite contains almost pure albite (An 01 , ~50‒55 vol. %), quartz (~20‒25 vol. %), epidote (~1 vol. %), phengite (5‒12 vol. %), and secondary chlorite (~10‒15 vol. %) and calcite (~5 vol. %). Accessories are zircon, apatite, and ilmenite. The granite has a calc-alkaline geochemical signature with a metaluminous and high-Na character. CaO, MgO, and FeO contents are relatively low. Normalised contents of rare-earth elements (REE) show a relatively flat distribution of those that are heavy, suggesting a magma source in the lower continental crust. The modelled empirical relationship for average crustal thickness based on Sr/Y ratio and contents of REE indicates a 34 km thick continental crust. Zircon typology is characterised by the predominance of {100} prisms and {101} bipyramids. This typology, zircon chemistry, zircon saturation temperature (775 °C), and Ti-in-zircon temperature (mean 785 °C) also suggest a deep-seated magma source. Epidote and perhaps phengite crystallised at a pressure around 1.0 GPa from the melt according to thermodynamic modelling. Temperatures were 650 °C or more at this stage. A U–Pb concordia age of 242.9±4.0 Ma (2σ) was determined on zircon coinciding with the Middle Triassic peak of magmatic activity in the Dinarides, but also in the Southern Alps and Western Carpathians. The age is interpreted as marking the beginning of the fragmentation of continental lithosphere and the onset of rifting processes, which was followed by the broadening of the newly-formed Neotethys Ocean. constraints to the onset of the Mesozoic geodynamic evolution of a local branch of the Neotethys Ocean. The information on magma evolution and petrogenesis is provided by characteristics of the granite and critical minerals therein. We use new data on epidote chemistry and combine them with the zircon trace and isotopic chemistry to unravel and reconstruct the age, origin, and evolution of the acidic magma as a consequence of the onset of large-scale geodynamic processes.
期刊介绍:
GEOLOGICA CARPATHICA covers a wide spectrum of geological disciplines including geodynamics, tectonics and structural geology, volcanology, stratigraphy, geochronology and isotopic geology, karstology, geochemistry, mineralogy, petrology, lithology and sedimentology, paleogeography, paleoecology, paleobiology and paleontology, paleomagnetism, magnetostratigraphy and other branches of applied geophysics, economic and environmental geology, experimental and theoretical geoscientific studies. Geologica Carpathica , with its 60 year old tradition, presents high-quality research papers devoted to all aspects not only of the Alpine-Carpathian-Balkanian geoscience but also with adjacent regions originated from the Mediterranean Tethys and its continental foreland. Geologica Carpathica is an Official Journal of the Carpathian-Balkan Geological Association.