{"title":"直轧细晶Ti-6Al-4V钛合金超塑性流动过程中空洞生长的模拟","authors":"Xin Wang, Ge Zhou, Chao Liu, Siqian Zhang, Haoyu Zhang, Feng Li, Lijia Chen","doi":"10.1080/09500839.2022.2036380","DOIUrl":null,"url":null,"abstract":"ABSTRACT Ti–6Al–4V fine-grained plates were manufactured using a rolling method and then subjected to superplastic tensile tests at varying temperatures and strain rates on an AG 250KNE electronic tensile testing machine. The superplastic behaviours of the plates were also tested. A cavity-growth model was established and the changing laws of energy during cavity growth and microstructure evolution of superplastic deformation were predicted. The Ti–6Al–4V alloy possessed the maximum elongation rate of 886% at 840°C and a strain rate of 5 × 10−4 s−1. The strain-rate sensitivity index m for this alloy was 0.54. The mechanism of superplastic deformation was established to be strain-induced grain-boundary slip, and the mechanism of cavity growth to be plasticity-controlled cavity coalescence and growth.","PeriodicalId":19860,"journal":{"name":"Philosophical Magazine Letters","volume":"102 1","pages":"133 - 140"},"PeriodicalIF":1.2000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modelling of cavity growth during the superplastic flow of a fine-grained Ti–6Al–4V titanium alloy processed by direct rolling\",\"authors\":\"Xin Wang, Ge Zhou, Chao Liu, Siqian Zhang, Haoyu Zhang, Feng Li, Lijia Chen\",\"doi\":\"10.1080/09500839.2022.2036380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Ti–6Al–4V fine-grained plates were manufactured using a rolling method and then subjected to superplastic tensile tests at varying temperatures and strain rates on an AG 250KNE electronic tensile testing machine. The superplastic behaviours of the plates were also tested. A cavity-growth model was established and the changing laws of energy during cavity growth and microstructure evolution of superplastic deformation were predicted. The Ti–6Al–4V alloy possessed the maximum elongation rate of 886% at 840°C and a strain rate of 5 × 10−4 s−1. The strain-rate sensitivity index m for this alloy was 0.54. The mechanism of superplastic deformation was established to be strain-induced grain-boundary slip, and the mechanism of cavity growth to be plasticity-controlled cavity coalescence and growth.\",\"PeriodicalId\":19860,\"journal\":{\"name\":\"Philosophical Magazine Letters\",\"volume\":\"102 1\",\"pages\":\"133 - 140\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09500839.2022.2036380\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09500839.2022.2036380","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Modelling of cavity growth during the superplastic flow of a fine-grained Ti–6Al–4V titanium alloy processed by direct rolling
ABSTRACT Ti–6Al–4V fine-grained plates were manufactured using a rolling method and then subjected to superplastic tensile tests at varying temperatures and strain rates on an AG 250KNE electronic tensile testing machine. The superplastic behaviours of the plates were also tested. A cavity-growth model was established and the changing laws of energy during cavity growth and microstructure evolution of superplastic deformation were predicted. The Ti–6Al–4V alloy possessed the maximum elongation rate of 886% at 840°C and a strain rate of 5 × 10−4 s−1. The strain-rate sensitivity index m for this alloy was 0.54. The mechanism of superplastic deformation was established to be strain-induced grain-boundary slip, and the mechanism of cavity growth to be plasticity-controlled cavity coalescence and growth.
期刊介绍:
Philosophical Magazine Letters is the rapid communications part of the highly respected Philosophical Magazine, which was first published in 1798. Its Editors consider for publication short and timely contributions in the field of condensed matter describing original results, theories and concepts relating to the structure and properties of crystalline materials, ceramics, polymers, glasses, amorphous films, composites and soft matter. Articles emphasizing experimental, theoretical and modelling studies on solids, especially those that interpret behaviour on a microscopic, atomic or electronic scale, are particularly appropriate.
Manuscripts are considered on the strict condition that they have been submitted only to Philosophical Magazine Letters , that they have not been published already, and that they are not under consideration for publication elsewhere.