表面相关的植物细胞培养

Biofilms Pub Date : 2020-07-01 DOI:10.5194/biofilms9-79
A. Mehring, J. Stiefelmaier, R. Ulber
{"title":"表面相关的植物细胞培养","authors":"A. Mehring, J. Stiefelmaier, R. Ulber","doi":"10.5194/biofilms9-79","DOIUrl":null,"url":null,"abstract":"<p>Biofilms are typically characterized as a consortium of microorganisms, which adhere to each other and often to surfaces. This adhesion is realized by extracellular polymeric substances (EPS), which are secreted by the microorganisms and mainly consist of water, polysaccharides, proteins and lipids as well as nucleic acids and lysis products [1]. Although cultured plant cells are not typically considered biofilms, parallels can be found in the properties of plant calli. These callus cells tend to form cohesive aggregates, owing to their extracellular matrix, and often strongly adhere to the agar plates they are kept on. The extracellular matrix of plant cells is mainly composed of structural polysaccharides, such as xyloglucans, arabinogalactans [2], homogalacturonan and extensins [3] among others. Cultured plant cells were found to adhere to surfaces before [4]. Surface-associated plant cell culture may have potential in a (semi&#8209;)continuous cultivation including product secretion, as was shown in principle for alginate-embedded plant cells [5]. For cyanobacterial biofilms, an efficient strategy for EPS extraction was recently developed [6]. The transferability of these protocols to biofilm-like growing plant calli of Ocimum basilicum is currently being investigated. Subsequently, the composition of the extracellular matrix extracted from cultured O.&#160;basilicum cells is of interest. Furthermore, the adhesive properties of O.&#160;basilicum suspension cultures to microstructured surfaces and the potential role of the extracellular matrix are under investigation. An investigation of culture properties in an aerosol photobioreactor [7] is planned as well.</p>\n<p>This project is financially supported by the German research foundation (DFG, project number SFB 926-C03).</p>\n<p>&#160;</p>\n<p>References:</p>\n<p>[1]&#160;&#160;&#160;&#160;&#160; H. C. Flemming, T. R. Neu, and D. J. Wozniak, &#8220;The EPS matrix: The &#8216;House of Biofilm Cells,&#8217;&#8221; J. Bacteriol., vol. 189, no. 22, pp. 7945&#8211;7947, 2007.</p>\n<p>[2]&#160;&#160;&#160;&#160;&#160; I. M. Sims, K. Middleton, A. G. Lane, A. J. Cairns, and A. Bacic, &#8220;Characterisation of extracellular polysaccharides from suspension cultures of members of the Poaceae,&#8221; Planta, vol. 210, no. 2, pp. 261&#8211;268, Jan. 2000.</p>\n<p>[3]&#160;&#160;&#160;&#160;&#160; M. Popielarska-Konieczna, K. Sala, M. Abdullah, M. Tuleja, and E. Kurczy&#324;ska, &#8220;Extracellular matrix and wall composition are diverse in the organogenic and non-organogenic calli of Actinidia arguta,&#8221; Plant Cell Rep., no. 0123456789, 2020.</p>\n<p>[4]&#160;&#160;&#160;&#160;&#160; R. J. Robins, D. O. Hall, D. &#8208;J Shi, R. J. Turner, and M. J. C. Rhodes, &#8220;Mucilage acts to adhere cyanobacteria and cultured plant cells to biological and inert surfaces,&#8221; FEMS Microbiol. Lett., vol. 34, no. 2, pp. 155&#8211;160, 1986.</p>\n<p>[5]&#160;&#160;&#160;&#160;&#160; Y. Kobayashi, H. Fukui, and M. Tabata, &#8220;Berberine production by batch and semi-continuous cultures of immobilized Thalictrum cells in an improved bioreactor,&#8221; Plant Cell Rep., vol. 7, no. 4, pp. 249&#8211;252, 1988.</p>\n<p>[6]&#160;&#160;&#160;&#160;&#160; D. Strieth, J. Stiefelmaier, B. Wrabl et al., &#8220;A new strategy for a combined isolation of EPS and pigments from cyanobacteria,&#8221; J. Appl. Phycol., no. Fromme 2008, Feb. 2020.</p>\n<p>[7]&#160;&#160;&#160;&#160;&#160;&#160;&#160; S. Kuhne, D. Strieth, M. Lakatos, K. Muffler, and R. Ulber, &#8220;A new photobioreactor concept enabling the production of desiccation induced biotechnological products using terrestrial cyanobacteria,&#8221; J. Biotechnol., vol. 192, no. Part A, pp. 28&#8211;33, 2014.</p>","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface-associated plant cell culture\",\"authors\":\"A. Mehring, J. Stiefelmaier, R. Ulber\",\"doi\":\"10.5194/biofilms9-79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biofilms are typically characterized as a consortium of microorganisms, which adhere to each other and often to surfaces. This adhesion is realized by extracellular polymeric substances (EPS), which are secreted by the microorganisms and mainly consist of water, polysaccharides, proteins and lipids as well as nucleic acids and lysis products [1]. Although cultured plant cells are not typically considered biofilms, parallels can be found in the properties of plant calli. These callus cells tend to form cohesive aggregates, owing to their extracellular matrix, and often strongly adhere to the agar plates they are kept on. The extracellular matrix of plant cells is mainly composed of structural polysaccharides, such as xyloglucans, arabinogalactans [2], homogalacturonan and extensins [3] among others. Cultured plant cells were found to adhere to surfaces before [4]. Surface-associated plant cell culture may have potential in a (semi&#8209;)continuous cultivation including product secretion, as was shown in principle for alginate-embedded plant cells [5]. For cyanobacterial biofilms, an efficient strategy for EPS extraction was recently developed [6]. The transferability of these protocols to biofilm-like growing plant calli of Ocimum basilicum is currently being investigated. Subsequently, the composition of the extracellular matrix extracted from cultured O.&#160;basilicum cells is of interest. Furthermore, the adhesive properties of O.&#160;basilicum suspension cultures to microstructured surfaces and the potential role of the extracellular matrix are under investigation. An investigation of culture properties in an aerosol photobioreactor [7] is planned as well.</p>\\n<p>This project is financially supported by the German research foundation (DFG, project number SFB 926-C03).</p>\\n<p>&#160;</p>\\n<p>References:</p>\\n<p>[1]&#160;&#160;&#160;&#160;&#160; H. C. Flemming, T. R. Neu, and D. J. Wozniak, &#8220;The EPS matrix: The &#8216;House of Biofilm Cells,&#8217;&#8221; J. Bacteriol., vol. 189, no. 22, pp. 7945&#8211;7947, 2007.</p>\\n<p>[2]&#160;&#160;&#160;&#160;&#160; I. M. Sims, K. Middleton, A. G. Lane, A. J. Cairns, and A. Bacic, &#8220;Characterisation of extracellular polysaccharides from suspension cultures of members of the Poaceae,&#8221; Planta, vol. 210, no. 2, pp. 261&#8211;268, Jan. 2000.</p>\\n<p>[3]&#160;&#160;&#160;&#160;&#160; M. Popielarska-Konieczna, K. Sala, M. Abdullah, M. Tuleja, and E. Kurczy&#324;ska, &#8220;Extracellular matrix and wall composition are diverse in the organogenic and non-organogenic calli of Actinidia arguta,&#8221; Plant Cell Rep., no. 0123456789, 2020.</p>\\n<p>[4]&#160;&#160;&#160;&#160;&#160; R. J. Robins, D. O. Hall, D. &#8208;J Shi, R. J. Turner, and M. J. C. Rhodes, &#8220;Mucilage acts to adhere cyanobacteria and cultured plant cells to biological and inert surfaces,&#8221; FEMS Microbiol. Lett., vol. 34, no. 2, pp. 155&#8211;160, 1986.</p>\\n<p>[5]&#160;&#160;&#160;&#160;&#160; Y. Kobayashi, H. Fukui, and M. Tabata, &#8220;Berberine production by batch and semi-continuous cultures of immobilized Thalictrum cells in an improved bioreactor,&#8221; Plant Cell Rep., vol. 7, no. 4, pp. 249&#8211;252, 1988.</p>\\n<p>[6]&#160;&#160;&#160;&#160;&#160; D. Strieth, J. Stiefelmaier, B. Wrabl et al., &#8220;A new strategy for a combined isolation of EPS and pigments from cyanobacteria,&#8221; J. Appl. Phycol., no. Fromme 2008, Feb. 2020.</p>\\n<p>[7]&#160;&#160;&#160;&#160;&#160;&#160;&#160; S. Kuhne, D. Strieth, M. Lakatos, K. Muffler, and R. Ulber, &#8220;A new photobioreactor concept enabling the production of desiccation induced biotechnological products using terrestrial cyanobacteria,&#8221; J. Biotechnol., vol. 192, no. Part A, pp. 28&#8211;33, 2014.</p>\",\"PeriodicalId\":87392,\"journal\":{\"name\":\"Biofilms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofilms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/biofilms9-79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/biofilms9-79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物膜的典型特征是微生物的联合体,它们相互粘附,经常附着在表面上。这种粘附是由微生物分泌的细胞外聚合物(EPS)来实现的,EPS主要由水、多糖、蛋白质和脂质以及核酸和裂解产物[1]组成。虽然培养的植物细胞通常不被认为是生物膜,但在植物愈伤组织的特性中可以发现相似之处。由于细胞外基质的作用,这些愈伤组织细胞倾向于形成有凝聚力的聚集体,并且经常强烈地粘附在它们所处的琼脂板上。植物细胞的胞外基质主要由结构多糖组成,如木葡聚糖、阿拉伯半乳聚糖[2]、均半乳聚糖[3]和伸展蛋白[3]等。培养的植物细胞在bb0之前就能粘附在表面。表面相关的植物细胞培养在(半‑)连续培养中可能具有潜力,包括产物分泌,正如藻酸盐包埋的植物细胞[5]的原理所示。对于蓝藻生物膜,最近开发了一种高效的EPS提取策略。目前正在研究这些方案在basilicum生物膜样生长植物愈伤组织中的可移植性。随后,从培养的O. basilicum细胞中提取的细胞外基质的组成令人感兴趣。此外,O. basilicum悬浮培养物对微结构表面的粘附性能和细胞外基质的潜在作用正在研究中。并计划对气溶胶光生物反应器[7]的培养特性进行研究。本项目由德国研究基金会(DFG,项目编号SFB 926-C03)资助。 参考文献:[1]   H. C.弗莱明,T. R.纽和D. J.沃兹尼亚克,&# 8220;EPS矩阵:‘生物膜细胞之家,’”j . Bacteriol。,第189卷,第189期。22日,页。7945 & # 8211;7947年,2007年。[2]& # 160;& # 160;& # 160;& # 160;& # 160;I. M. Sims, K. Middleton, A. G. Lane, A. J. Cairns和A. Bacic, “从Poaceae成员的悬浮培养中提取细胞外多糖的特性,”《植物》,第210卷,第2期。2,页261 & # 8211;268年,2000年1月。[3]& # 160;& # 160;& # 160;& # 160;& # 160;M. Popielarska-Konieczna, K. Sala, M. Abdullah, M. Tuleja, and E. kurczye ńska, “猕桃有机和非有机愈伤组织细胞外基质和细胞壁组成不同,”植物细胞代表,不。0123456789, 2020。[4]& # 160;& # 160;& # 160;& # 160;& # 160;R. J. Robins, D. O. Hall, D. ‐J . Shi, R. J. Turner, and M. J. C. Rhodes, “粘液作用使蓝藻和培养的植物细胞粘附在生物和惰性表面上,”《。列托人。,第34卷,no。2,页155 & # 8211;160年,1986年。[5]& # 160;& # 160;& # 160;& # 160;& # 160;Y. Kobayashi, H. Fukui, and M. Tabata, “固定化Thalictrum细胞在改进的生物反应器中分批和半连续培养生产小檗碱,”植物细胞报,第7卷,第7期。4,页249 & # 8211;252年,1988年。[6]& # 160;& # 160;& # 160;& # 160;& # 160;D. Strieth, J. Stiefelmaier, B. Wrabl等,&# 8220;从蓝藻中联合分离EPS和色素的新策略,”j:。Phycol。,没有。Fromme 2008年,2020年2月。[7]& # 160;& # 160;& # 160;& # 160;& # 160;& # 160;& # 160;S. Kuhne, D. Strieth, M. Lakatos, K. Muffler, and R. Ulber, “利用陆生蓝藻生产干燥诱导生物技术产品的新光生物反应器概念,”生物科技j .》。,第192卷,第2号。A部分,pp. 28–33, 2014。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface-associated plant cell culture

Biofilms are typically characterized as a consortium of microorganisms, which adhere to each other and often to surfaces. This adhesion is realized by extracellular polymeric substances (EPS), which are secreted by the microorganisms and mainly consist of water, polysaccharides, proteins and lipids as well as nucleic acids and lysis products [1]. Although cultured plant cells are not typically considered biofilms, parallels can be found in the properties of plant calli. These callus cells tend to form cohesive aggregates, owing to their extracellular matrix, and often strongly adhere to the agar plates they are kept on. The extracellular matrix of plant cells is mainly composed of structural polysaccharides, such as xyloglucans, arabinogalactans [2], homogalacturonan and extensins [3] among others. Cultured plant cells were found to adhere to surfaces before [4]. Surface-associated plant cell culture may have potential in a (semi‑)continuous cultivation including product secretion, as was shown in principle for alginate-embedded plant cells [5]. For cyanobacterial biofilms, an efficient strategy for EPS extraction was recently developed [6]. The transferability of these protocols to biofilm-like growing plant calli of Ocimum basilicum is currently being investigated. Subsequently, the composition of the extracellular matrix extracted from cultured O. basilicum cells is of interest. Furthermore, the adhesive properties of O. basilicum suspension cultures to microstructured surfaces and the potential role of the extracellular matrix are under investigation. An investigation of culture properties in an aerosol photobioreactor [7] is planned as well.

This project is financially supported by the German research foundation (DFG, project number SFB 926-C03).

 

References:

[1]      H. C. Flemming, T. R. Neu, and D. J. Wozniak, “The EPS matrix: The ‘House of Biofilm Cells,’” J. Bacteriol., vol. 189, no. 22, pp. 7945–7947, 2007.

[2]      I. M. Sims, K. Middleton, A. G. Lane, A. J. Cairns, and A. Bacic, “Characterisation of extracellular polysaccharides from suspension cultures of members of the Poaceae,” Planta, vol. 210, no. 2, pp. 261–268, Jan. 2000.

[3]      M. Popielarska-Konieczna, K. Sala, M. Abdullah, M. Tuleja, and E. Kurczyńska, “Extracellular matrix and wall composition are diverse in the organogenic and non-organogenic calli of Actinidia arguta,” Plant Cell Rep., no. 0123456789, 2020.

[4]      R. J. Robins, D. O. Hall, D. ‐J Shi, R. J. Turner, and M. J. C. Rhodes, “Mucilage acts to adhere cyanobacteria and cultured plant cells to biological and inert surfaces,” FEMS Microbiol. Lett., vol. 34, no. 2, pp. 155–160, 1986.

[5]      Y. Kobayashi, H. Fukui, and M. Tabata, “Berberine production by batch and semi-continuous cultures of immobilized Thalictrum cells in an improved bioreactor,” Plant Cell Rep., vol. 7, no. 4, pp. 249–252, 1988.

[6]      D. Strieth, J. Stiefelmaier, B. Wrabl et al., “A new strategy for a combined isolation of EPS and pigments from cyanobacteria,” J. Appl. Phycol., no. Fromme 2008, Feb. 2020.

[7]        S. Kuhne, D. Strieth, M. Lakatos, K. Muffler, and R. Ulber, “A new photobioreactor concept enabling the production of desiccation induced biotechnological products using terrestrial cyanobacteria,” J. Biotechnol., vol. 192, no. Part A, pp. 28–33, 2014.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Global analyses imply that Stenotrophomonas maltophilia biofilms are phenotypically highly diverse despite a common transcriptome profile BiofilmQ, a software tool for quantiative image analysis of microbial biofilm communities Monitoring and quantification of bioelectrochemical biofilms by means of OCT in novel and customized reactor-setups Biofilm and productivity-associated community changes in serial-transfer experiments in heterogeneous liquid microcosms Heterogeneities in biofilms from clinical isolates under flow conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1