{"title":"昆虫天线:分割、图案和位置同源性","authors":"A. Minelli","doi":"10.4081/JEAR.2017.6680","DOIUrl":null,"url":null,"abstract":"The basic mechanism by which the antennal flagellum is subdivided into flagellomeres is probably the same in all insects, irrespective of whether the process occurs in the embryo, in the eye/antenna imaginal disc, or through a series of post-embryonic increments punctuated by moults. The ultimate origin of (all?) flagellomeres is the first antennomere following the pedicel, from which split off in apical direction new primary flagellomeres, each of which is eventually the source of secondary flagellomeres, according to specific spatial and temporal patterns subject to heterochrony. Only a detailed knowledge of the underlying segmentation processes could provide the ultimate background for determining positional homology between flagellomeres of two antennae with different number of antennomeres. The antennae of the Heteroptera are likely re-segmented, as their second antennomere seems to include a flagellar component. The larval antennae of the holometabolans are temporal serial homologues of those of the adult, but their segmental composition is problematic. Significant progress will be done by understanding what differentiates antennomeres that divide, either embryonically or post-embryonically, from those that do not; and by discovering whether the spatial and temporal pattern of division along the flagellum depends on local cues, or on signals travelling along the whole proximo-distal axis of the appendage.","PeriodicalId":37777,"journal":{"name":"Journal of Entomological and Acarological Research","volume":"49 1","pages":"59-66"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4081/JEAR.2017.6680","citationCount":"6","resultStr":"{\"title\":\"The insect antenna: segmentation, patterning and positional homology\",\"authors\":\"A. Minelli\",\"doi\":\"10.4081/JEAR.2017.6680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The basic mechanism by which the antennal flagellum is subdivided into flagellomeres is probably the same in all insects, irrespective of whether the process occurs in the embryo, in the eye/antenna imaginal disc, or through a series of post-embryonic increments punctuated by moults. The ultimate origin of (all?) flagellomeres is the first antennomere following the pedicel, from which split off in apical direction new primary flagellomeres, each of which is eventually the source of secondary flagellomeres, according to specific spatial and temporal patterns subject to heterochrony. Only a detailed knowledge of the underlying segmentation processes could provide the ultimate background for determining positional homology between flagellomeres of two antennae with different number of antennomeres. The antennae of the Heteroptera are likely re-segmented, as their second antennomere seems to include a flagellar component. The larval antennae of the holometabolans are temporal serial homologues of those of the adult, but their segmental composition is problematic. Significant progress will be done by understanding what differentiates antennomeres that divide, either embryonically or post-embryonically, from those that do not; and by discovering whether the spatial and temporal pattern of division along the flagellum depends on local cues, or on signals travelling along the whole proximo-distal axis of the appendage.\",\"PeriodicalId\":37777,\"journal\":{\"name\":\"Journal of Entomological and Acarological Research\",\"volume\":\"49 1\",\"pages\":\"59-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4081/JEAR.2017.6680\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Entomological and Acarological Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4081/JEAR.2017.6680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Entomological and Acarological Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/JEAR.2017.6680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
The insect antenna: segmentation, patterning and positional homology
The basic mechanism by which the antennal flagellum is subdivided into flagellomeres is probably the same in all insects, irrespective of whether the process occurs in the embryo, in the eye/antenna imaginal disc, or through a series of post-embryonic increments punctuated by moults. The ultimate origin of (all?) flagellomeres is the first antennomere following the pedicel, from which split off in apical direction new primary flagellomeres, each of which is eventually the source of secondary flagellomeres, according to specific spatial and temporal patterns subject to heterochrony. Only a detailed knowledge of the underlying segmentation processes could provide the ultimate background for determining positional homology between flagellomeres of two antennae with different number of antennomeres. The antennae of the Heteroptera are likely re-segmented, as their second antennomere seems to include a flagellar component. The larval antennae of the holometabolans are temporal serial homologues of those of the adult, but their segmental composition is problematic. Significant progress will be done by understanding what differentiates antennomeres that divide, either embryonically or post-embryonically, from those that do not; and by discovering whether the spatial and temporal pattern of division along the flagellum depends on local cues, or on signals travelling along the whole proximo-distal axis of the appendage.
期刊介绍:
The Journal of Entomological and Acarological Research (JEAR), formerly the Bollettino di Zoologia Agraria e di Bachicoltura of the Institute of Entomology of the Università degli Studi, Milano, was founded in 1928 by Remo Grandori. Thereafter, Minos Martelli and Luciano Süss hold the direction of the Journal until December 2011. In January 2012 the Editor decided for the new open-access on-line version of JEAR. The Journal publishes original research papers concerning Arthopods, but reviews, editorials, technical reports, brief notes, conference proceeding, letters to the Editor, book reviews are also welcome. JEAR has four main areas of interest: -Entomology (systematics; morphology; biology; biotechnology; agriculture, ornamental and forest entomology; applied entomology; integrated pest management; biological control; apiculture and apidology; medical, urban and veterinary entomology; etc.) -Stored product pests (biology; integrated pest management; etc.) -Insect Ecology (behaviour; biodiversity; taxonomy; plant insect interaction and ecosystems; biological control; alien species; etc.) -Acarology (systematics; morphology; biology; parasitology; control; etc.) The publication of manuscripts is subject to the approval of the Section Editor who has knowledge of the field discussed in the manuscript in accordance with the principles of Peer Review; referees will be selected from the Editorial Board or among qualified scientists of the international scientific community. Articles must be written in English and must adhere to the guidelines and details contained in the Instructions to Authors.