改性蒙脱石-粘土催化剂优化废食用油中游离脂肪酸酯化反应的Box-Behnken设计

Q4 Chemical Engineering ASEAN Journal of Chemical Engineering Pub Date : 2023-04-29 DOI:10.22146/ajche.77009
A. Buasri, Suthita Lertnimit, Arnon Nisapruksachart, Issara Khunkha, V. Loryuenyong
{"title":"改性蒙脱石-粘土催化剂优化废食用油中游离脂肪酸酯化反应的Box-Behnken设计","authors":"A. Buasri, Suthita Lertnimit, Arnon Nisapruksachart, Issara Khunkha, V. Loryuenyong","doi":"10.22146/ajche.77009","DOIUrl":null,"url":null,"abstract":"A potential alternative fuel option is biodiesel, which is produced mostly from natural resources due to the limited availability of petroleum supplies and environmental issues. Waste cooking oil (WCO) containing a high concentration of free fatty acid (FFA) can be transformed into biodiesel, which substantially benefits the environment and for reducing the fuel . The use of smectite clay as a catalyst in the esterification reaction of WCO with methanol was studied. Smectite was chemically activated by sulfuric acid (H2SO4) to obtain the acid-modified smectite. The utilization of an acid-catalyzed esterification procedure as a pre-treatment for WCO for biodiesel synthesis has been studied in some detail. However, there aren't many effective ways to optimize this operation. The process variables used in this study's esterification of FFAs in WCO were optimized using a Box-Behnken design (BBD). At atmospheric pressure, the catalyst amount of 5.03 wt%, the methanol to WCO molar ratio of 22.38, and the reaction time of 3.01 h are the optimal running parameters for accomplishing 97.96% FFA conversion. The catalyst was employed five times in a row without noticeably lowering its catalytic effectiveness. The results showed that smectite clay is an essential, low-cost, and recyclable catalyst for the esterification of FFA in WCO.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Box-Behnken Design for Optimization on Esterification of Free Fatty Acids in Waste Cooking Oil Using Modified Smectite Clay Catalyst\",\"authors\":\"A. Buasri, Suthita Lertnimit, Arnon Nisapruksachart, Issara Khunkha, V. Loryuenyong\",\"doi\":\"10.22146/ajche.77009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A potential alternative fuel option is biodiesel, which is produced mostly from natural resources due to the limited availability of petroleum supplies and environmental issues. Waste cooking oil (WCO) containing a high concentration of free fatty acid (FFA) can be transformed into biodiesel, which substantially benefits the environment and for reducing the fuel . The use of smectite clay as a catalyst in the esterification reaction of WCO with methanol was studied. Smectite was chemically activated by sulfuric acid (H2SO4) to obtain the acid-modified smectite. The utilization of an acid-catalyzed esterification procedure as a pre-treatment for WCO for biodiesel synthesis has been studied in some detail. However, there aren't many effective ways to optimize this operation. The process variables used in this study's esterification of FFAs in WCO were optimized using a Box-Behnken design (BBD). At atmospheric pressure, the catalyst amount of 5.03 wt%, the methanol to WCO molar ratio of 22.38, and the reaction time of 3.01 h are the optimal running parameters for accomplishing 97.96% FFA conversion. The catalyst was employed five times in a row without noticeably lowering its catalytic effectiveness. The results showed that smectite clay is an essential, low-cost, and recyclable catalyst for the esterification of FFA in WCO.\",\"PeriodicalId\":8490,\"journal\":{\"name\":\"ASEAN Journal of Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASEAN Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ajche.77009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ajche.77009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1

摘要

一种潜在的替代燃料选择是生物柴油,由于石油供应有限和环境问题,生物柴油主要由自然资源生产。含有高浓度游离脂肪酸(FFA)的废弃食用油(WCO)可以转化为生物柴油,这对环境和减少燃料都有很大好处。研究了蒙脱石粘土在WCO与甲醇酯化反应中的应用。用硫酸(H2SO4)对蒙脱石进行化学活化,得到酸改性蒙脱石。采用酸催化酯化法对WCO预处理合成生物柴油进行了较为详细的研究。然而,没有太多有效的方法来优化这种操作。使用Box-Behnken设计(BBD)优化了WCO中FFA酯化过程中使用的工艺变量。在大气压下,催化剂用量为5.03wt%,甲醇与WCO摩尔比为22.38,反应时间为3.01h是实现97.96%FFA转化率的最佳运行参数。该催化剂连续使用五次而没有显著降低其催化效率。结果表明,蒙脱石粘土是WCO中FFA酯化反应的一种重要、低成本、可回收的催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Box-Behnken Design for Optimization on Esterification of Free Fatty Acids in Waste Cooking Oil Using Modified Smectite Clay Catalyst
A potential alternative fuel option is biodiesel, which is produced mostly from natural resources due to the limited availability of petroleum supplies and environmental issues. Waste cooking oil (WCO) containing a high concentration of free fatty acid (FFA) can be transformed into biodiesel, which substantially benefits the environment and for reducing the fuel . The use of smectite clay as a catalyst in the esterification reaction of WCO with methanol was studied. Smectite was chemically activated by sulfuric acid (H2SO4) to obtain the acid-modified smectite. The utilization of an acid-catalyzed esterification procedure as a pre-treatment for WCO for biodiesel synthesis has been studied in some detail. However, there aren't many effective ways to optimize this operation. The process variables used in this study's esterification of FFAs in WCO were optimized using a Box-Behnken design (BBD). At atmospheric pressure, the catalyst amount of 5.03 wt%, the methanol to WCO molar ratio of 22.38, and the reaction time of 3.01 h are the optimal running parameters for accomplishing 97.96% FFA conversion. The catalyst was employed five times in a row without noticeably lowering its catalytic effectiveness. The results showed that smectite clay is an essential, low-cost, and recyclable catalyst for the esterification of FFA in WCO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ASEAN Journal of Chemical Engineering
ASEAN Journal of Chemical Engineering Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
15
期刊最新文献
Optimization of Defective Coffee Beans Decaffeination Using Palm Oil The Deep Eutectic Solvent in Used Batteries as an Electrolyte Additive for Potential Chitosan Solid Electrolyte Membrane Chemical Properties and Breakthrough Adsorption Study of Activated Carbon Derived from Carbon Precursor from Carbide Industry Extraction of Java Lemongrass (Cymbopogon citratus) Using Microwave-Assisted Hydro Distillation in Pilot Scale: Parametric Study and Modelling Catalytic Decarboxylation of Palm Oil to Green Diesel over Pellets of Ni-CaO/Activated Carbon (AC) Catalyst Under Subcritical Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1