{"title":"基于二维洪水模型的流域土地利用/土地覆盖风险暴露分析","authors":"G. Puno, R. Puno, I. V. Maghuyop","doi":"10.22034/GJESM.2021.02.06","DOIUrl":null,"url":null,"abstract":"BACKGROUND AND OBJECTIVES: The study involved developing a two-dimensional flood model to analyze the risk exposure of land use/land cover based on the generated flood hazard maps for the six return period scenarios in the Solana watershed. METHODS: The approach consisted of applying hydrologic and hydraulic numerical flood models and the suite of advanced geographic information systems and remote sensing technologies. The process involved utilizing a high-resolution digital elevation model and a set of high-precision instruments such as the real-time kinematic-global position system receiver, digital flow meter, deep gauge, and automatic weather station in collecting the respective data on bathymetry, river discharge, river depth, and rainfall intensity during a particular climatic event, needed for the model development, calibration and validation. FINDINGS: The developed two-dimensional flood model could simulate flood hazard with an 86% accuracy level based on the coefficient of determination statistics. The flood risk exposure analysis revealed that coconut is the most affected, with 31.3% and 37.1% being at risk across the 2-year and 100-year return period scenarios, respectively. Results also showed that rice and pineapple are at risk of flooding damage with the increasing rate of exposure by a magnitude of 42.9 and 9.3 across the 2-year and 100-year flood scenarios, respectively. CONCLUSION: The study highlighted the integration of the findings and recommendations in the localized comprehensive land use plan and implementation to realize the challenge of building a climate change proof and a flood-resilient human settlement in the urbanizing watershed of Solana.","PeriodicalId":46495,"journal":{"name":"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Two-dimensional flood model for risk exposure analysis of land use/land cover in a watershed\",\"authors\":\"G. Puno, R. Puno, I. V. Maghuyop\",\"doi\":\"10.22034/GJESM.2021.02.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND AND OBJECTIVES: The study involved developing a two-dimensional flood model to analyze the risk exposure of land use/land cover based on the generated flood hazard maps for the six return period scenarios in the Solana watershed. METHODS: The approach consisted of applying hydrologic and hydraulic numerical flood models and the suite of advanced geographic information systems and remote sensing technologies. The process involved utilizing a high-resolution digital elevation model and a set of high-precision instruments such as the real-time kinematic-global position system receiver, digital flow meter, deep gauge, and automatic weather station in collecting the respective data on bathymetry, river discharge, river depth, and rainfall intensity during a particular climatic event, needed for the model development, calibration and validation. FINDINGS: The developed two-dimensional flood model could simulate flood hazard with an 86% accuracy level based on the coefficient of determination statistics. The flood risk exposure analysis revealed that coconut is the most affected, with 31.3% and 37.1% being at risk across the 2-year and 100-year return period scenarios, respectively. Results also showed that rice and pineapple are at risk of flooding damage with the increasing rate of exposure by a magnitude of 42.9 and 9.3 across the 2-year and 100-year flood scenarios, respectively. CONCLUSION: The study highlighted the integration of the findings and recommendations in the localized comprehensive land use plan and implementation to realize the challenge of building a climate change proof and a flood-resilient human settlement in the urbanizing watershed of Solana.\",\"PeriodicalId\":46495,\"journal\":{\"name\":\"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/GJESM.2021.02.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/GJESM.2021.02.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Two-dimensional flood model for risk exposure analysis of land use/land cover in a watershed
BACKGROUND AND OBJECTIVES: The study involved developing a two-dimensional flood model to analyze the risk exposure of land use/land cover based on the generated flood hazard maps for the six return period scenarios in the Solana watershed. METHODS: The approach consisted of applying hydrologic and hydraulic numerical flood models and the suite of advanced geographic information systems and remote sensing technologies. The process involved utilizing a high-resolution digital elevation model and a set of high-precision instruments such as the real-time kinematic-global position system receiver, digital flow meter, deep gauge, and automatic weather station in collecting the respective data on bathymetry, river discharge, river depth, and rainfall intensity during a particular climatic event, needed for the model development, calibration and validation. FINDINGS: The developed two-dimensional flood model could simulate flood hazard with an 86% accuracy level based on the coefficient of determination statistics. The flood risk exposure analysis revealed that coconut is the most affected, with 31.3% and 37.1% being at risk across the 2-year and 100-year return period scenarios, respectively. Results also showed that rice and pineapple are at risk of flooding damage with the increasing rate of exposure by a magnitude of 42.9 and 9.3 across the 2-year and 100-year flood scenarios, respectively. CONCLUSION: The study highlighted the integration of the findings and recommendations in the localized comprehensive land use plan and implementation to realize the challenge of building a climate change proof and a flood-resilient human settlement in the urbanizing watershed of Solana.