{"title":"连续性技能限制的调度和路由问题:公式、优化和启示","authors":"Mingda Liu, Yanlu Zhao, Xiaolei Xie","doi":"10.1080/24725854.2023.2215843","DOIUrl":null,"url":null,"abstract":"Abstract As the aging population grows, the demand for long-term continuously Attended Home Healthcare (AHH) services has increased significantly in recent years. AHH services are beneficial since they not only alleviate the pressure on hospital resources, but also provide more convenient care for patients. However, how to reasonably assign patients to doctors and arrange their visiting sequences is still a challenging task due to various complex factors such as heterogeneous doctors, skill-matching requirements, continuity of care, and uncertain travel and service times. Motivated by a practical problem faced by an AHH service provider, we investigate a deterministic continuity-skill-restricted scheduling and routing problem (CSRP) and its stochastic variant (SCSRP) to address these operational challenges. The problem is formulated as a heterogeneous site-dependent and consistent vehicle routing problem with time windows. However, there is not a compact model and a practically implementable exact algorithm in the literature to solve such a complicated problem. To fill this gap, we propose a branch-price-and-cut algorithm to solve the CSRP and a discrete-approximation-method adaption for the SCSRP. Extensive numerical experiments and a real case study verify the effectiveness and efficiency of the proposed algorithms and provide managerial insights for AHH service providers to achieve better performance.","PeriodicalId":56039,"journal":{"name":"IISE Transactions","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuity-skill-restricted Scheduling and Routing Problem: Formulation, Optimization and Implications\",\"authors\":\"Mingda Liu, Yanlu Zhao, Xiaolei Xie\",\"doi\":\"10.1080/24725854.2023.2215843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As the aging population grows, the demand for long-term continuously Attended Home Healthcare (AHH) services has increased significantly in recent years. AHH services are beneficial since they not only alleviate the pressure on hospital resources, but also provide more convenient care for patients. However, how to reasonably assign patients to doctors and arrange their visiting sequences is still a challenging task due to various complex factors such as heterogeneous doctors, skill-matching requirements, continuity of care, and uncertain travel and service times. Motivated by a practical problem faced by an AHH service provider, we investigate a deterministic continuity-skill-restricted scheduling and routing problem (CSRP) and its stochastic variant (SCSRP) to address these operational challenges. The problem is formulated as a heterogeneous site-dependent and consistent vehicle routing problem with time windows. However, there is not a compact model and a practically implementable exact algorithm in the literature to solve such a complicated problem. To fill this gap, we propose a branch-price-and-cut algorithm to solve the CSRP and a discrete-approximation-method adaption for the SCSRP. Extensive numerical experiments and a real case study verify the effectiveness and efficiency of the proposed algorithms and provide managerial insights for AHH service providers to achieve better performance.\",\"PeriodicalId\":56039,\"journal\":{\"name\":\"IISE Transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IISE Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/24725854.2023.2215843\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE Transactions","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/24725854.2023.2215843","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Continuity-skill-restricted Scheduling and Routing Problem: Formulation, Optimization and Implications
Abstract As the aging population grows, the demand for long-term continuously Attended Home Healthcare (AHH) services has increased significantly in recent years. AHH services are beneficial since they not only alleviate the pressure on hospital resources, but also provide more convenient care for patients. However, how to reasonably assign patients to doctors and arrange their visiting sequences is still a challenging task due to various complex factors such as heterogeneous doctors, skill-matching requirements, continuity of care, and uncertain travel and service times. Motivated by a practical problem faced by an AHH service provider, we investigate a deterministic continuity-skill-restricted scheduling and routing problem (CSRP) and its stochastic variant (SCSRP) to address these operational challenges. The problem is formulated as a heterogeneous site-dependent and consistent vehicle routing problem with time windows. However, there is not a compact model and a practically implementable exact algorithm in the literature to solve such a complicated problem. To fill this gap, we propose a branch-price-and-cut algorithm to solve the CSRP and a discrete-approximation-method adaption for the SCSRP. Extensive numerical experiments and a real case study verify the effectiveness and efficiency of the proposed algorithms and provide managerial insights for AHH service providers to achieve better performance.
IISE TransactionsEngineering-Industrial and Manufacturing Engineering
CiteScore
5.70
自引率
7.70%
发文量
93
期刊介绍:
IISE Transactions is currently abstracted/indexed in the following services: CSA/ASCE Civil Engineering Abstracts; CSA-Computer & Information Systems Abstracts; CSA-Corrosion Abstracts; CSA-Electronics & Communications Abstracts; CSA-Engineered Materials Abstracts; CSA-Materials Research Database with METADEX; CSA-Mechanical & Transportation Engineering Abstracts; CSA-Solid State & Superconductivity Abstracts; INSPEC Information Services and Science Citation Index.
Institute of Industrial and Systems Engineers and our publisher Taylor & Francis make every effort to ensure the accuracy of all the information (the "Content") contained in our publications. However, Institute of Industrial and Systems Engineers and our publisher Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Institute of Industrial and Systems Engineers and our publisher Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Institute of Industrial and Systems Engineers and our publisher Taylor & Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to, or arising out of the use of the Content. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions .