利用卷积神经网络通过图像分类自动分析有孔虫化石记录

IF 4.1 3区 地球科学 Q1 PALEONTOLOGY Journal of Micropalaeontology Pub Date : 2020-10-15 DOI:10.5194/jm-39-183-2020
R. Marchant, M. Tetard, Adnya Pratiwi, M. Adebayo, T. de Garidel-Thoron
{"title":"利用卷积神经网络通过图像分类自动分析有孔虫化石记录","authors":"R. Marchant, M. Tetard, Adnya Pratiwi, M. Adebayo, T. de Garidel-Thoron","doi":"10.5194/jm-39-183-2020","DOIUrl":null,"url":null,"abstract":"Abstract. Manual identification of foraminiferal morphospecies or morphotypes under stereo microscopes is time consuming for micropalaeontologists and not possible for nonspecialists. Therefore, a long-term goal has been to automate this process to improve its efficiency and repeatability. Recent advances in computation hardware have seen deep convolutional neural networks emerge as the state-of-the-art technique for image-based automated classification. Here, we describe a method for classifying large foraminifera image sets using convolutional neural networks. Construction of the classifier is demonstrated on the publicly available Endless Forams image set with a best accuracy of approximately 90 %. A complete automatic analysis is performed for benthic species dated to the last deglacial period for a sediment core from the north-eastern Pacific and for planktonic species dated from the present until 180 000 years ago in a core from the western Pacific warm pool. The relative abundances from automatic counting based on more than 500 000 images compare favourably with manual counting, showing the same signal dynamics. Our workflow opens the way to automated palaeoceanographic reconstruction based on computer image analysis and is freely available for use.\n","PeriodicalId":54786,"journal":{"name":"Journal of Micropalaeontology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Automated analysis of foraminifera fossil records by image classification using a convolutional neural network\",\"authors\":\"R. Marchant, M. Tetard, Adnya Pratiwi, M. Adebayo, T. de Garidel-Thoron\",\"doi\":\"10.5194/jm-39-183-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Manual identification of foraminiferal morphospecies or morphotypes under stereo microscopes is time consuming for micropalaeontologists and not possible for nonspecialists. Therefore, a long-term goal has been to automate this process to improve its efficiency and repeatability. Recent advances in computation hardware have seen deep convolutional neural networks emerge as the state-of-the-art technique for image-based automated classification. Here, we describe a method for classifying large foraminifera image sets using convolutional neural networks. Construction of the classifier is demonstrated on the publicly available Endless Forams image set with a best accuracy of approximately 90 %. A complete automatic analysis is performed for benthic species dated to the last deglacial period for a sediment core from the north-eastern Pacific and for planktonic species dated from the present until 180 000 years ago in a core from the western Pacific warm pool. The relative abundances from automatic counting based on more than 500 000 images compare favourably with manual counting, showing the same signal dynamics. Our workflow opens the way to automated palaeoceanographic reconstruction based on computer image analysis and is freely available for use.\\n\",\"PeriodicalId\":54786,\"journal\":{\"name\":\"Journal of Micropalaeontology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2020-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micropalaeontology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/jm-39-183-2020\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PALEONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micropalaeontology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/jm-39-183-2020","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PALEONTOLOGY","Score":null,"Total":0}
引用次数: 29

摘要

摘要在立体显微镜下手工鉴定有孔虫形态种或形态型对微体古生物学家来说是费时的,对非专业人员来说是不可能的。因此,长期目标是使该过程自动化,以提高其效率和可重复性。计算硬件的最新进展已经看到深度卷积神经网络作为基于图像的自动分类的最先进技术出现。在这里,我们描述了一种使用卷积神经网络对大型有孔虫图像集进行分类的方法。在公开可用的Endless Forams图像集上演示了分类器的构建,其最佳准确率约为90%。对东北太平洋沉积物岩心的最后一次去冰期底栖生物物种和西太平洋暖池岩心的现在至18万年前浮游生物物种进行了完整的自动分析。基于超过50万张图像的自动计数的相对丰度与人工计数相比有利,显示出相同的信号动态。我们的工作流程为基于计算机图像分析的自动古海洋学重建开辟了道路,并且可以免费使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated analysis of foraminifera fossil records by image classification using a convolutional neural network
Abstract. Manual identification of foraminiferal morphospecies or morphotypes under stereo microscopes is time consuming for micropalaeontologists and not possible for nonspecialists. Therefore, a long-term goal has been to automate this process to improve its efficiency and repeatability. Recent advances in computation hardware have seen deep convolutional neural networks emerge as the state-of-the-art technique for image-based automated classification. Here, we describe a method for classifying large foraminifera image sets using convolutional neural networks. Construction of the classifier is demonstrated on the publicly available Endless Forams image set with a best accuracy of approximately 90 %. A complete automatic analysis is performed for benthic species dated to the last deglacial period for a sediment core from the north-eastern Pacific and for planktonic species dated from the present until 180 000 years ago in a core from the western Pacific warm pool. The relative abundances from automatic counting based on more than 500 000 images compare favourably with manual counting, showing the same signal dynamics. Our workflow opens the way to automated palaeoceanographic reconstruction based on computer image analysis and is freely available for use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micropalaeontology
Journal of Micropalaeontology 生物-古生物学
CiteScore
4.30
自引率
5.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The Journal of Micropalaeontology (JM) is an established international journal covering all aspects of microfossils and their application to both applied studies and basic research. In particular we welcome submissions relating to microfossils and their application to palaeoceanography, palaeoclimatology, palaeobiology, evolution, taxonomy, environmental change and molecular phylogeny.
期刊最新文献
Late Miocene to Early Pliocene benthic foraminifera from the Tasman Sea (Integrated Ocean Drilling Program Site U1506) Palsys.org: an open-access taxonomic and stratigraphic database of organic-walled dinoflagellate cysts Miocene Climatic Optimum fungal record and plant-based CREST climatic reconstruction from southern McMurdo Sound, Antarctica Triassic and Jurassic possible planktonic foraminifera and the assemblages recovered from the Ogrodzieniec Glauconitic Marls Formation (uppermost Callovian and lowermost Oxfordian, Jurassic) of the Polish Basin Dinoflagellate cyst and pollen assemblages as tracers for marine productivity and river input in the northern Gulf of Mexico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1